We start here from:
$$
1 = e^{\psi} e^{-\psi} = e^{-\psi} Z = e^{-\psi} \sum_i e^{-\beta E(\mathbf{x}_i,\mathbf{p}_i)} e^{\beta \mu N(\mathbf{x}_i,\mathbf{p}_i)} = \sum_i e^{-\beta E(\mathbf{x}_i,\mathbf{p}_i) + \beta \mu N(\mathbf{x}_i,\mathbf{p}_i) - \psi }
$$
Differentiating both sides of this expression with respect to $(\beta \mu)$ gives:
$$
\begin{aligned}
0 & = \sum_i \left( N(\mathbf{x}_i,\mathbf{p}_i) - \frac{\partial \psi}{\partial (\beta \mu)} \right) e^{-\beta E(\mathbf{x}_i,\mathbf{p}_i) + \beta \mu N(\mathbf{x}_i,\mathbf{p}_i) - \psi } \\
& = \sum_i N(\mathbf{x}_i,\mathbf{p}_i) \frac{e^{-\beta E(\mathbf{x}_i,\mathbf{p}_i)} e^{\beta \mu N(\mathbf{x}_i,\mathbf{p}_i)}}{e^\psi} - \sum_i \left( \frac{\partial \psi}{\partial (\beta \mu)} \right) \frac{e^{-\beta E(\mathbf{x}_i,\mathbf{p}_i)} e^{\beta \mu N(\mathbf{x}_i,\mathbf{p}_i)}}{e^\psi} \\
& = \sum_i N(\mathbf{x}_i,\mathbf{p}_i) P_i - \left( \frac{\partial \psi}{\partial (\beta \mu)} \right) \sum_i P_i \\
0 & = \langle N \rangle - \left( \frac{\partial \psi}{\partial (\beta \mu)} \right)
\end{aligned}
$$
Note the that energy of a microstate {\bf does not} depend on $\mu$ the derivatives of these quantities are zero.