
Chapter 1

Revision of basic concepts

1.1 Principles of logic

In order to establish the laws of set algebra, one can use logical deduction. Let us very briefly review the
algebra developed by Boole 1 in 1854. Logical propositions must be either true or false. For convenience,
the ‘logical value’ of any proposition can be represented by numerical values:

“true” = 1 “false” = 0 . (1.1)

Given two propositions: p and q, then the conjunction:

p ∧ q

denotes the logical expression ‘p and q’. The conjunction is true if, and only if, both p and q are true.

The disjunction
p ∨ q

denotes ‘p or q’. That is, the logical value is true if either p or q are true.

Finally the negation of a proposition is denoted by ¬p, meaning the opposite of p.

These rules of logic can be summarized in algebraic form by a truth table:

p q p ∨ q p ∧ q ¬p
1 1 1 1 0
1 0 1 0 0
0 1 1 0 1
0 0 0 0 1

So, for example, the third row of the table above summarizes the following logical statements. Given
that p is false (p = 0) and q is true (q = 1), in answer to the question,“ is either p or q true ?”, we say
yes (true). So in the table we enter the value in the third column:

p ∨ q = 1 .

While in response to the question,“ are both p and q true ?”, we say no (false). That is:

p ∧ q = 0 ,

and finally, the negation of p is true, given that p is false, and so on.

From these rules we have the logical expression of DeMorgan’s laws 2:

¬(p ∨ q) = (¬p) ∧ (¬q) , ¬(p ∧ q) = (¬p) ∨ (¬q)

The first law can be verified by an example. Given the following popositions: p=“the ball is black”
. q=“the ball is number 24”, then since ¬(p ∨ q)=“the ball is neither black NOR is it number 24” is
equivalent to the statement that “the ball is not black AND it is not numbered 24”.

1George Boole (1815-1864) Professor of Mathematics at University College Cork
2Augustus De Morgan (1806 -1871)
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1.2 Events

Suppose there is a random process that can be observed/measured. In the theory of probability, the act
of observation is called an experiment, and the result of the observation is called the outcome.

The set of all possible outcomes is called the sample space, or universal set. In these lectures it is denoted
by Ω, but the symbol S is also commonly used.

Example A single coin is tossed and falls to the ground. The sample space of the upward face of the
coin is either heads (H) or tails (T ). Therefore, the sample space is:

Ω = {H, T } (1.2)

If the upward face of a (six-sided) die is considered the outcome, then:

Ω = {1, 2, 3, 4, 5, 6} (1.3)

An event, A, is a collection of outcomes, that is a subset of Ω:

A ⊂ Ω (1.4)

For the roll of a single die, one could define events such as the following:

• A1: the die shows an even number. Thus A1 = {2, 4, 6}.

• A2: the die shows a prime number: A2 = {2, 3, 5}.

• A3: the die shows a 6: A3 = {6}.

1.3 Unions and intersections

The ‘logical’ operators and and or have equivalents in set theory. The union of two subsets of Ω, A and
B is denoted: A ∪ B (means all outcomes in either A or B, or both).

A ∪ B = {s : s in A or B} . (1.5)

Note that in this expression on the right-hand-side the braces indicate the ”set of elements”, s (and the
colon is read ”such that”).

The intersection of two subsets of Ω, A and B is denoted: A ∩ B (means all outcomes in both A and
B), that is:

A ∩ B = {s : s in A and B} (1.6)

The symbol ∪ is the set equivalent of the logical operator ∨.

A B
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Figure 1.1: Venn diagram indicating the sets A and B
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Note the following shorthand:

n
⋃

i=1

Ai ≡ A1 ∪ A2 ∪ · · · ∪ An ,
n
⋂

i=1

Ai ≡ A1 ∩ A2 ∩ · · · ∩ An (1.7)

The complement of a set A, denoted by Ac:

Ac = {s : s ∈ Ω and s /∈ A} . (1.8)

This has the reflexive property

(Ac)c = A . (1.9)
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Figure 1.2: A ∪ B: the union of A and B shaded.
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Figure 1.3: A ∩ B: the intersection of A and B,
shaded.

1.3.1 The empty set

The empty set is denoted by the symbol ∅ and contains no elements: it represents impossible events.

For example, the event:

B = {s : s even and s odd}

is impossible; a number cannot be both even and odd. Thus, B = ∅.
We note that the empty set plays the role of zero in set algebra. In particular the following very important
identities, for any set A, are true:

A ∩ ∅ = ∅ , A ∪ ∅ = A . (1.10)

By definition of an impossible event we can write:

A ∩ Ac = ∅ while A ∪ Ac = Ω , (1.11)

that is (for the first identity) an event occurring and not occurring is impossible, while an event occurring
or not occurring is certain. In the language of algebra we view ∅ as the additive identity and thus Ac as
the additive inverse of A.

The difference of two sets, is denoted by A \ B, and has the definition:

A \ B = {s : s ∈ A and /∈ B} (1.12)

This is equivalent to the definition: A \ B = A ∩ Bc.

Any two sets (A and B) such that: A∩B = ∅ are called disjoint sets. The events corresponding to A and
B are then said to be mutually exclusive; they can never both occur. That is, the occurrence of event A
means that event B is excluded, and vice versa.
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1.3.2 Event space

A σ-Field or event space, F is a collection of events (subsets) of Ω, let us denote them as A1, A2, . . . ,
such that:

(a) ∅ ∈ F

(b) if Ai ∈ F , then so too Ac
i ∈ F

(c) if A1, A2, · · · ∈ F , then ∪iAi ∈ F

The statement (c) can be read as ”F is closed under finite countable unions, and so are all intersections,
unions and complements.”

In the language of group theory, these three constraints are equivalent to the axioms of (a) the existence
of an additive identity (b) the existence of an inverse, and (c) the property of closure. That is, we can
construct rules of algebra under the operation of addition.

1.4 Set algebra

We say two sets are equal A = B when:

A ⊂ B and B ⊂ A

The analogue of the multiplicative identity in set algebra in the sample space, Ω. Thus we have:

A ∩ Ω = A A ∪ Ω = Ω

Having established the laws of binary operation, we can then deduce the following laws:

Commutative law:
A ∩ B = B ∩ A , A ∪ B = B ∪ A (1.13)

Associative law:

A ∩ (B ∩ C) = (A ∩ B) ∩ C , A ∪ (B ∪ C) = (A ∪ B) ∪ C (1.14)

We can prove these statement by appealing to the logical analogy discussed above, in which the symbols
∩ and ∪ correspond to “and” and “or”. For example:

ω ∈ A ∪ (B ∪ C)

means:
ω ∈ A or ω ∈ (B ∪ C) ,

that is,
ω ∈ A or ω ∈ Bor ω ∈ C .

Thus:
ω ∈ (A ∪ B) or ω ∈ C

ω ∈ (A ∪ B) ∪ C

Distributive law:
A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C) (1.15)

A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C) (1.16)

De Morgan Laws:

(A ∪ B)c = Ac ∩ Bc and (A ∩ B)c = Ac ∪ Bc
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Figure 1.4: Venn diagram illustrating the inclusion-exclusion principle (equation 1.19). The union of A
and B expressed as the union of three disjoint subsets. A \ B (horizontal lines), A ∩ B (horizontal and
vertical lines), and B \ A (vertical lines).

with the generalization;
[

n
⋃

i=1

Ai

]c

=
n
⋂

i=1

Ac
i (1.17)

[

n
⋂

i=1

Ai

]c

=
n
⋃

i=1

Ac
i (1.18)

A very important result that describes the partitioning of the union of two sets is called the inclusion-
exclusion principle or the addition theorem . It can be expressed as follows:

A ∪ B = (A \ B) ∪ (B \ A) ∪ (A ∩ B) (1.19)

The principle defines the union of A and B in terms of the disjoint subsets: A \ B, B \ A and A ∩ B.

It is equivalent to the statement that, given an outcome is either in A or B, then it must be one (and
only one) of the three possibilities: in A and not B, in B and not A, or in both A and B. This relation
is represented graphically in figure 1.4.


