
Statistical mechanics handout 2

Give an ex-
pression for the
differential df
in terms of the
differentials dx
and dy.

Explain how
the coefficients
of the dx and
dy terms in
your equation
can be obtained
by making
reference to
power series and
limits.

Differentials We write the differential of a function of x and y as df =
Cx(x, y)dx+Cy(x, y)dy, where Cx and Cy are functions of x and y. In other
words we can write the differential df as a linear combination of the differen-
tials dx and dy with coefficients Cx(x, y) and Cy(x, y). Linear combinations
are intuitive - what is difficult is the interpretation of the symbols dx and dy
as these are used to represent infinitesimally small changes in the x and y
values respectively. It is thus perhaps simpler to start by considering a finite
change in δx. When we make this change (holding y fixed) the corresponding
change in f can be written as:

f(x+ δx, y)− f(x, y) =

∞∑
i=1

Ci(x, y)(δx)i

where here the right hand side comes about because we can express any real
number in terms of a power series. Dividing both sides of the above by δx
and taking the limit as δx→ 0 brings us to:

lim
δx→0

f(x+ δx, y)− f(x, y)

δx
= C1(x, y)+ lim

δx→0

∞∑
i=2

Ci(x, y)(δx)i−1 = C1(x, y)

We thus arrive at a rather neat definition of our Cx(x, y) function. It is
simply the coefficient of the leading order term in the above power series.
By a similar logic Cy(x, y) is the coefficient of the leading order term in the
power series expansion for f(x, y+δy)−f(x, y) that can be written in terms
of δy. The limit on the right hand side of the above equation is the definition
of the partial derivative so we may rewrite our expression for a differential
using:

df =

(
∂f

∂x

)
y

dx+

(
∂f

∂y

)
x

dy

In writing all this last formula have assumed that the function f(x, y) is exact
(see below). If the differential is not exact the above formula is not strictly

correct as it makes little or no sense to talk about
(
∂f
∂x

)
y

when the function

f(x, y) does not exist.

What is the
property of an
exact differen-
tial

Exact differentials are differentials that have the all important property:(
∂Cx
∂y

)
x

=

(
∂Cy
∂x

)
y

or

(
∂2f

∂x∂y

)
=

(
∂2f

∂x∂y

)
If the above expression does not hold for the coefficients in df = Cx(x, y)dx+
Cy(x, y)dy then a function for f in terms of x and y cannot be written
down because integrals around closed paths will be non-zero. This makes it
nonsensical to ascribe a single value, f(x, y), to the point (x, y) as one can
always go around a closed loop and change it.

Summary

The differential of a function is df = Cx(x, y)dx+Cy(x, y)dy. If the coefficients in this expression satisfy(
∂Cx

∂y

)
x

=
(
∂Cy

∂x

)
y

the differential is said to be exact and the function f(x, y) exists. A differential that

is not exact (i.e. one that does not have this property) does not have a corresponding f(x, y) as integrals
around closed paths can be non-zero.
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Give a formula
for the funda-
mental theorem
of calculus

Explain when
the integral
between a and b
depends on the
path taken

Integration The fundamental theorem of calculus states:

d

db

∫ b

a

f(x)dx = f(b)

In other words if we want to calculate how much the value of some quantity
changes on moving via a particular path from point a to point b we can
do so by calculating an integral. Notice that it is a differential f(x)dx that
appears underneath the integral sign here and that as such the change in the
value of the quantity on moving from a to b is only independent of the path
taken if the differential is exact.

Explain the dif-
ference between
heat and work

For which
of the following
quantities does
the amount
done during a
transition from
state a to state
b depend on
path taken:
heat, work
and change in
internal energy.

Heat and work In the previous handout we learnt about the various types
of systems (isolated,closed and open) we have in thermodynamics and the
types of walls that can surround a system. This classification was based on
what things are allowed to transfer from the rest of the universe into and out
of the system. There is a very important distinction between heat transfer
dq and work transfer dw in thermodynamics. When work is transferred from
the system we can harness it in engines to lift weights, drive cars and so on.
By contrast when heat is transferred from the system we cannot harness it
in engines directly. Notice that neither of these objects are exact
differentials. Consequently, during a change in state the heat output
and the work done will depend on the manner in which the
change of state is performed.

State the first
law of thermo-
dynamics

Internal en-
ergy is a exact
differential give
three conse-
quences of this
fact

The first law of thermodynamics states:

dE = dq + dw

In other words we measure the change in internal energy by adding together
the work done one the system and the heat absorbed by the system. We
assume that the internal energy is an exact differential. This has three im-
portant consequences:

• The change in internal energy on moving from equilibrium state A to
state B does not depend on the path taken.

• The change in internal energy on moving around a closed path that
starts and ends in equilibrium state A is zero.

• The internal energy of an isolated system is constant.

Summary

Physical or chemical systems interact with their surroundings by exchanging heat and work. To under-
stand the transfer of heat and work we introduce a conserved quantity known as the internal energy
E. We define the change in internal energy as the sum of the work done on the system and the heat
absorbed by the system. Because the internal energy is an exact differential the change in internal
energy on moving from equilibrium state A to equilibrium state B is independent of the path taken. By
contrast the individual amounts of heat absorbed and work done on the system will depend on the path
taken because these quantities are not exact differentials.
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State the second
law of thermo-
dynamics

When does
the equality
sign in the
second law hold
and when is it
an inequality

The second law of thermodynamics states:

∆A→BS ≥
∫ B

A

dq

T

The equality sign holds when the transition is reversible, the inequality holds
when the transition is irreversible. In the lecture we proved the above formula
by starting from the statement the passage of heat from a cold body to a hot
body cannot be the sole result of any transformation. The entropy is once
again an exact differential so:

• The change in entropy on moving from equilibrium state A to state B
does not depend on the path taken.

• The change in entropy on moving around a closed path that starts and
ends in equilibrium state A is zero.

Importantly, however, because of the inequality sign in the second law of
thermodynamics, the heat absorbed during a transition will depend on the
path taken and during moves around closed paths heat will be input/output
from the system. The consequence of this is that it is impossible to build an
engine that converts 100 % all of the heat it absorbs into work.

Write an ex-
pression that
combines the
first and second
laws of thermo-
dynamics

How are the
temperature,
pressure and
chemical po-
tential related
to derivatives
of the internal
energy

How are the
Maxwell rela-
tions derived.

Combining the first and second laws gives:

dE = TdS − PdV + µdN

This expression is derived by considering the differentials that it is possible
to derive for reversible transitions (see handout 1) and by remembering that
the internal energy is an exact differential so the change internal energy does
not depend on the path taken between equilibrium states. In other words the
above expression holds for both reversible and irreversible transitions. The
theory of exact differentials tells us that:

dE =

(
∂E

∂S

)
V,N

dS +

(
∂E

∂V

)
S,N

dV +

(
∂E

∂N

)
V,S

dN

Equating coefficients in these two expressions gives:

T =

(
∂E

∂S

)
V,N

P = −
(
∂E

∂V

)
S,N

µ =

(
∂E

∂N

)
V,S

Furthermore, using the equality of the second, crossed derivatives
(
∂2E
∂V ∂S

)
=(

∂2E
∂S∂V

)
(Maxwell relation) we arrive at:(

∂T

∂V

)
S,N

= −
(
∂P

∂S

)
V,N

Summary

The second law of thermodynamics defines an exact differential known as the entropy and tells us that
it is impossible to build an engine that is 100 % efficient. By combining the first and second laws
of thermodynamics you can arrive at an expression for the differential of the internal energy that is
given entirely in terms of the thermodynamic variables. You can then connect intensive variables to
derivatives of the internal energy with respect to intensive variables and derive Maxwell relations.
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Which ther-
modynamic
variables
must be min-
imised/maximised
at equilibrium

Minimum energy maximum entropy When a system is at equilibrium
the entropy must be maximised and the internal energy must be minimised.
When this is not the case it is possible to extract energy as work thereby low-
ering the internal energy. The internal energy extracted can then be returned
as heat thereby increasing the entropy. The same argument can be be made
the opposite way around.

Explain how
two systems in
contact reach
an equilibrium

Extensive and intensive quantities and equilibrium If two systems
are placed in contact then the extensive quantities for one of the systems will
increase while the extensive quantities for the other system will decrease until
equilibrium is attained. Equilibrium is achieved when the values of all the
intensive variables are equal in the two systems.

Explain what is
meant by the
term reservoir
when it is used
in thermody-
namics?

Explain why
new ther-
modynamic
potentials are
required

Reservoirs We often talk about systems placed in contact with a very large
reservoirs. We do this because when we do so we can assume that the
reservoir is so large that the exchange of extensive variables with the system
does not affect the values of the reservoirs intensive quantities. In other words,
when a system is placed in contact with a reservoir it will have equilibrated
with the reservoir once all its intensive thermodynamic variables are equal to
values of the intensive thermodynamic variables of the reservoir. We use the
thermodynamic potentials discussed on the next pages to describe systems
in contact with various reservoirs. In particular, enthalpy is used to describe
systems surrounded by adiabatic walls that are in contact with a volume
reservoir. Helmholtz free energy is used to describe closed systems surrounded
by diabatic walls that in contact with an internal energy reservoir (or heat
bath). Gibbs free energy is used to describe closed systems surrounded by
walls that can exchange both heat and work with the reservoir but that cannot
exchange material. The reservoir for the Gibbs free energy is both a volume
reservoir and an energy reservoir (or heat bath).

Give the defini-
tion of enthalpy

Write an ex-
pression for the
differential of
the enthalpy

Explain which
thermodynamic
variables are
related to the
derivatives of
the enthalpy

Give the
Maxwell re-
lation that
can be derived
based on the
definition of the
enthalpy

Enthalpy is defined as:
H = E + PV

We can thus write the differential of the enthalpy as:

dH = dE + PdV + V dP = TdS − PdV + µdN + PdV + V dP

= TdS + µdN + V dP

In the second step above we insert the result for dE that we obtained by
combining the first and second laws.
Enthalpy is an exact differential so we can write:

dH =

(
∂H

∂S

)
P,N

dS +

(
∂H

∂P

)
S,N

dP +

(
∂H

∂N

)
P,S

dN

Equating coefficients in these two expressions gives:

T =

(
∂H

∂S

)
P,N

V =

(
∂H

∂V

)
S,N

µ =

(
∂H

∂N

)
P,S

Equality of second, crossed derivatives gives:(
∂T

∂P

)
S,N

=

(
∂V

∂S

)
P,N
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Define the
Helmholtz free
energy, F

Write the
differential of
the Helmholtz
free energy

Which ther-
modynamic
variables are
related to the
derivatives of
the F

Give the
Maxwell re-
lation that
can be derived
based on the
definition of the
F

Helmholtz free energy is defined as:

F = E − TS

We can thus write the differential of the Helmholtz free energy as:

dF = dE − TdS − SdT = TdS − PdV + µdN − TdS − SdT

= −PdV + µdN − SdT

In the second step above we insert the result for dE that we obtained by
combining the first and second laws.
Helmholtz free energy is an exact differential so we can write:

dF =

(
∂F

∂T

)
V,N

dT +

(
∂F

∂V

)
T,N

dV +

(
∂F

∂N

)
V,T

dN

Equating coefficients in these two expressions gives:

S = −
(
∂F

∂T

)
V,N

P = −
(
∂F

∂V

)
T,N

µ =

(
∂F

∂N

)
V,T

Equality of second, crossed derivatives gives:(
∂P

∂T

)
V,N

=

(
∂S

∂V

)
T,N

Define the
Gibbs free en-
ergy, G

Write the
differential of
the Gibbs free
energy

Which ther-
modynamic
variables are
related to the
derivatives of
the G

Give the
Maxwell re-
lation that
can be derived
based on the
definition G

Gibbs free energy is defined as:

G = H − TS

We can thus write the differential of the Gibbs free energy as:

dG = dH − TdS − SdT = TdS + V dP + µdN − TdS − SdT

= V dP + µdN − SdT

In the second step above we insert the result for dH that we obtained above.
Gibbs free energy is an exact differential so we can write:

dG =

(
∂G

∂T

)
P,N

dT +

(
∂G

∂P

)
T,N

dV +

(
∂G

∂N

)
P,T

dN

Equating coefficients in these two expressions gives:

S = −
(
∂G

∂T

)
P,N

V =

(
∂G

∂P

)
T,N

µ =

(
∂G

∂N

)
P,T

Equality of second, crossed derivatives gives:(
∂V

∂T

)
P,N

= −
(
∂S

∂P

)
T,N

Summary

We introduce reservoirs so that we can understand the behaviours of systems at constant pressure
and constant temperature. New extensive thermodynamic variables that are known as thermodynamic
potentials are required to understand systems in contact with reservoirs.
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At what kind
of stationary
point must all
thermodynamic
potentials be at
equilibrium

At equilib-
rium what
constraints are
placed on the
values of second
derivatives of
the internal
energy and why

What con-
straints does
this require-
ment place on
the values of
the intensive
thermodynamic
quantities.

Stability conditions Consider a system in contact with a reservoir with
which it is able to exchange both work and heat. The appropriate thermody-
namic potential to use to describe the system is the Gibbs free energy which
is given by G = E+PV −TS. We know that the energy must be minimised
at equilibrium and that the entropy must be maximised. Consequently, if we
move away from equilibrium the Helmholtz free energy must increase (as E
will increase and −S will increase). If the move away from equilibrium is
small we can write:

δG = δE − TδS + PδV > 0

This equation holds because the system is in contact with a reservoir at
temperature T and pressure P so the values of the two intensive variables do
not change when the extensive variable is exchanged between the system and
the reservoir.
We can rearrange the expression above to give the following and then we can
expand the energy as a Taylor series:

TδS − PδV <δE

TδS − PδV <

(
∂E

∂S

)
N,V

δS +

(
∂E

∂V

)
N,S

δV +
1

2

(
∂2E

∂S2

)
N,V

(δS)
2

+
1

2

(
∂2E

∂V 2

)
N,S

(δV )
2
+

(
∂2E

∂V ∂S

)
δV δS + . . .

→ 0 <
1

2

(
∂2E

∂S2

)
N,V

(δS)
2
+

1

2

(
∂2E

∂V 2

)
N,S

(δV )
2
+

(
∂2E

∂V ∂S

)
δV δS + . . .

The last line here comes once we remember that T =
(
∂E
∂S

)
V,N

and P =

−
(
∂E
∂V

)
S,N

. Clearly, to satisfy this expression we must have
(
∂2E
∂S2

)
N,V

> 0

and
(
∂2E
∂V 2

)
N,S

> 0, which in turn implies that:

(
∂T

∂S

)
V

> 0 and −
(
∂P

∂V

)
S

> 0

Define the heat
capacity Cv

Define the
isotropy com-
pressibility κS

Explain why(
∂E
∂T

)
V

=

T
(
∂S
∂T

)
V

Response functions The derivatives of the thermodynamic variables are
known as response functions. Some of the most important are:

Constant volume heat capacity: Cv =

(
∂E

∂T

)
V

= T

(
∂S

∂T

)
V

Isoentropic compressibility: κS = − 1

V

(
∂V

∂P

)
S

All response functions must be positive because of the requirements
for stability discussed above. N.B. The fact that

(
∂E
∂T

)
V

= T
(
∂S
∂T

)
V

holds
because the derivative on the left hand side of this expression allows us to write
dE = CvdT . The second law of thermodynamics meanwhiles tells us that
the internal energy change associated with any constant volume transition
is given by dE = TdS. Equating these two expressions and rearranging gives
the equality required.

Summary

The fact that enthalpy is minimised at equilibrium and entropy is maximised ensures that the second
derivatives of the internal energy must be positive. This in turn places restraints on the values of the
so called response functions.
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Write out the
Taylor series
expansion of a
function

What does
it mean when
we say that
a function is
analytic at all
points

Analytic functions A function, f , is said to be analytic if the following
holds at all points, x, along it:

f(x+ δx) = f(x) +
df(x)

dx
δx+

1

2!

d2f(x)

dx2
(δx)2 +

1

3!

d3f(x)

dx3
(δx)3 + . . .

In other words, it can expanded using the Taylor series at all points. In order
for the above to hold all the derivatives of the function f(x, y) must be finite.
If any derivative of the function is infinite then the above expansion will fail
to converge.

What happens
to the deriva-
tives of the
thermodynamic
potentials when
a system crosses
a phase bound-
ary?

What can
one say about
the formula for
any thermody-
namic potential
at the points
when a system
crosses a phase
boundary?

Phase transitions If we compress a gas it will eventually reach a point
when it will convert into a liquid. When this happens the volume of the
material will suddenly decrease dramatically. We know that this change in
phase happens at a specific pressure (the coexistence point) so we therefore
infer that there is a discontinuity in any function that tells us the volume
given the pressure. In other words, at coexistence Pc, our function for the
volume V (P ) behaves as follows:

lim
ε→0

V (Pc + ε) 6= lim
ε→0

V (Pc − ε)

The volume is related to a derivative of the enthalpy via V =
(
∂H
∂P

)
N,S

.

Consequently, the discontinuous change in V at Pc implies that at Pc the
enthalpy can no longer be expanded around this point as a Taylor series and
hence that our function for the enthalpy cannot be analytic.a Consequently,
phase transitions are points where the derivatives of thermo-
dynamic potentials change discontinuously and where functions
for thermodynamic potentials are non-analytic.

aAt coexistence the derivative of the volume (the second derivative of the enthalpy)
will be infinite because of the discontinuity.

Summary

At phase boundaries some thermodynamic variables change discontinuously. Because thermodynamic
variables are related to derivatives of thermodynamic potentials this implies that the thermodynamic
potentials change non-analytically as you cross phase boundaries.
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