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Chapter 25

Medical Markov Chains

The progression of a medical condition is often considered as unpredictable. Although the risk factors

are well known, for example for a heavy smoker, the onset of illness is not predictable. At the level of

cell behaviour, the failure of functions can be random. Moreover, a chronic medical condition, cancer for

example, can progress through stages of increasing severity.

Let us assume that a condition progresses as a continuous-time Markov chain.

25.1 Successive states

Suppose we consider chronic kidney disease with three states:

X = 0 mild

X = 1 medium

X = 2 severe

Let us take a model that the condition progresses according to a continuous-time Markov chain, through

the states, 0 −→ 1 −→ 2, and the progression (in the absence of treatment) is irreversible. We assume

that the transition graph is given by (figure 25.1).

Figure 25.1: Transition graph for the progression of a stochastic chronic medical condition. The transition
probabilities are shown for a short time h. Clearly, states 0 and 1 are transient, while state 2 is an
absorbing state. Thus, in the long term, the system is certain to be in state 2.
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170 CHAPTER 25. MEDICAL MARKOV CHAINS

That is, the transition matrix has the form:

P(h) =






1− λ1h λ1h 0

0 1− λ2h λ2h

0 0 1




 . (25.1)

Then the corresponding jump-rate matrix will have the form:

Q = lim
h→0

(
P(h)− I

h

)

=






−λ1 λ1 0

0 −λ2 λ2

0 0 0




 . (25.2)

where λ1, λ2 describe the transition rates 0→ 1, 1→ 2. Again, the sum along each row must be zero.

Then the Kolmogorov forward equations are

Ṗ = PQ . (25.3)

That is, explicitly:






Ṗ00 Ṗ01 Ṗ02

Ṗ10 Ṗ11 Ṗ12

Ṗ20 Ṗ21 Ṗ22




 =






P00 P01 P02

P10 P11 P12

P20 P21 P22











−λ1 λ1 0

0 −λ2 λ2

0 0 0




 . (25.4)

with the formal solution:

P = exp(Qt) . (25.5)

The calculation of the exponential of the matrix is complicated, so we will choose the direct solution of

the Kolmogorov equations.

We are interested in the following question. If a patient begins in X = 0, what is the probability that the

patient is in X = 1 or X = 2 at a later time ? To solve this problem, we must integrate the Kolmogorov

equation, with the initial conditions that the patient is, with certainty in state 0 at t = 0. That is:

P00(0) = 1 , P01(0) = 0 , P02(0) = 0 . (25.6)

and we week the values:

P00(t) , P01(t) , P02(t) . (25.7)

Then the first row of Ṗ gives:

Ṗ00 = P00(−λ1)

Ṗ01 = P00(λ1) + P01(−λ2)

Ṗ02 = P01(λ2)

Note that if we add all three equations, the right-hand-side cancels out giving:

Ṗ00 + Ṗ01 + Ṗ02 = 0
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which is as we expect since: P00 + P01 + P12 = 1, then:

d

dt
(P00 + P01 + P12) = 0 .

These equations can be integrated directly and successively.

The first equation can be written as:

dP00

dt
= −λ1P00 , ⇒

dP00

P00
= −λ1dt (25.8)

after integrating, this gives:

lnP00 = −λ1t + A (25.9)

where the constant, A, is found form the initial condition P00(0) = 1, which implies A = 0. Then, this

can be written:

P00(t) = e−λ1t . (25.10)

Then the next equation to be solved is, substituting the solution for P00 :

Ṗ01 = λ1e
−λ1t + P01(−λ2) . (25.11)

That is:

Ṗ01 + λ2P01 = λ1e
−λ1t . (25.12)

To solve this differential equation, we use the integrating factor method.

This means multiplying across by the factor: eλ2t that gives,

eλ2t d

dt
P01 + λ2e

λ2tP01 = λ1e
(λ2−λ1)t . (25.13)

which can be written as:
d

dt

(

eλ2tP01

)

= λ1e
(λ2−λ1)t . (25.14)

and this integrates as follows:

eλ2tP01 =

∫

λ1e
(λ2−λ1)t dt (25.15)

giving, for λ1 $= λ2,

eλ2tP01 =
λ1

λ2 − λ1
e(λ2−λ1)t + B (25.16)

with the initial conditions, we have

0 =
λ1

λ2 − λ1
+ B (25.17)

which determines B. Then we use this result is equation (25.16) to give:

eλ2tP01 =
λ1

λ2 − λ1

(

e(λ2−λ1)t − 1
)

. (25.18)

One further step of simplification leads to:

P01(t) =
λ1

λ2 − λ1

(

e−λ1t − e−λ2t
)

, λ1 $= λ2 . (25.19)
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When λ1 = λ2 = λ, then we can invoke L’Hôpital’s rule to resolve the issue, giving us:

P01(t) = λte−λt λ1 = λ2 = λ . (25.20)

Of course, it is simpler to get the result directly from (25.15), since this would give (when λ1 = λ2):

eλtP01 =

∫

λ dt = λt (25.21)

This almost completes the work since:

P00(t) + P01(t) + P02(t) = 1 for all t . (25.22)

Therefore:

P02(t) = 1− P00 − P01 = 1− e−λ1t −
λ1

(λ2 − λ1)

(

e−λ1t − e−λ2t
)

. (25.23)

While, for λ1 = λ2 = λ, we get:

P02(t) = 1− e−λt(1 + λt) . (25.24)

Note that as t→ +∞, P02(t)→ 1 as expected. That is, since X = 2 is the absorbing state in this system,

then eventually (in the long run) the system will finish in X = 2 with certainty.

25.2 Arrival times

From the equations above, the average time the patient spends in any one state, and the expected time

to reach that state can be deduced.

25.2.1 Time in state 0

For the example, we have:

P00(t) = e−λ1t . (25.25)

So letting T0 be the continuous random variable that denotes the time spent in state X = 0, then:

P (T0 ≥ t) will be the probability that the patient is still in 0 after time t. Thus:

P (T0 ≥ t) = P00(t) . (25.26)

Then we have:

P (T0 ≤ t) = 1− P00(t) = 1− e−λ1t (25.27)

with, the associated probability density:

fT0
(t) = λ1e

−λ1t . (25.28)

This is the familiar exponential density so that:

E (T0) =
1

λ1
, var (T0) =

1

λ2
1

. (25.29)

This gives the expected time that the patient spends with a mild condition before it worsens.
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25.2.2 Time in state 1

Suppose the initial state was X(0) = 1. That is the condition of the patient at the start of our observation

as determined to be medium. Then the initial conditions would be:

P10(0) = 0 , P11(0) = 1 , P12(0) = 0 . (25.30)

In order to find the probabilities for the future condition: P10(t), P11(t), and P12(t), we need to solve the

Kolmogorov equations:
d

dt
P = PQ . (25.31)

In particular, along the second row:

d

dt
P10 = −λ1P10 (25.32)

d

dt
P11 = λ1P10 − λ2P11 (25.33)

d

dt
P12 = λ2P11 (25.34)

(25.35)

Then the first equation gives:

P10(t) = Ce−λ1t . (25.36)

Applying the initial condition gives: C = 0, so that: P10(t) = 0. That is, there is zero probability of being

in the mild condition if you start in the medium condition. This makes sense sicne this is a progressive

condition.

The second equation is simple, since P10(t) = 0, namely

d

dt
P11 = −λ2P11 (25.37)

which can be integrated, and with initial conditions applied gives:

P11(t) = e−λ2t . (25.38)

It then follows that, since the probabilities must add to one:

P12(t) = 1− e−λ2t (25.39)

That is P11 and P12 are exponential variables. In particular, as in section 25.2.1, the expected time the

patient spends in state 1 is:

E (T1) =
1

λ2
. (25.40)

25.2.3 Time to arrive in state 2

Having calculated the probabilities of being in each state, we can now calculate some parameters. Let

T2 be the arrival time for X = 2. That is T2 is the time taken for the condition to progress from mild to

severe. Then: P02(t) = P (T2 ≤ t) = FT2
(t) is the (cumulative) probability distribution, and the density
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Figure 25.2: Probabilities for the continuous-time Markov chain described by the jump-rate matrix,
equation (25.2). with the state initially in X = 0. The curves shown are for the rates: Left: λ1 =
0.2,λ2 = 0.3 (slow departure from X = 0). Right: λ1 = 0.5,λ2 = 0.3 (rapid departure from X = 0).
As indicated by the rising red line, at long times the probability of being in the absorbing state, X = 2,
is certain.

is:

fT2
(t) =

d

dt
FT2

(t) =
d

dt
P02(t) =

(
λ1λ2

λ2 − λ1

)
(

e−λ1t − e−λ2t
)

. (25.41)

And:

E(T2) =

∫ ∞

0
tfT2

(t)dt

E(T2) =

∫ ∞

0

(
λ1λ2

λ2 − λ1

)

t
↓
u

(

e−λ1t − e−λ2t
)

︸ ︷︷ ︸

dv

dt

dt

=
λ1λ2

(λ2 − λ1)

[

−
1

λ2
2

+
1

λ2
1

]

E
↓
(T2) =

1

λ1
+

1

λ2

expected time = expected time + expected time

0→ 2 0→ 1 1→ 2

. . . as ‘expected’.

This is not entirely unexpected since the processes are Markovian. The transitions, 0 → 1 and 1 → 2,

(as for a Poisson process) occur in disjoint time intervals, and therefore are independent processes.

For example, if we had: λ1 = 0.05 yr−1; λ2 = 0.1 yr−1

E(T2) = 20 + 90 = 30 years.

25.3 Parallel transitions

Suppose that the medical condition is such that there are 3 degrees of severity, as before, X = 0, 1, 2, but

it is possible for the condition to progress directly from X = 0 to X = 2, as well as through X = 1.
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Consider the jump-rate matrix to be:

Q =






−λ1 − λ2 λ1 λ2

0 −λ3 λ3

0 0 0




 . (25.42)

where λ1, λ2 and λ3, describe the transition rates 0→ 1, 0→ 2, and 1→ 2.
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Figure 25.3: Probabilities for the continuous-time Markov chain described by the jump-rate matrix,
equation (25.42). with the state initially in X = 0. The curves shown are for the rates: λ1 = 0.2,λ2 = 0.1,
λ3 = 0.15 As indicated by the rising red line, at long times, the probability of being in the absorbing
state,X = 2, is certain.

Then the Kolmogorov forward equations are:

Ṗ00 = P00(−λ1 − λ2)

Ṗ01 = P00(λ1) + P01(−λ3)

Ṗ02 = P00(λ2) + P01(λ3)

The equations can be integrated in exactly the same manner as before, the first equation gives:

P00(t) = e−(λ1+λ2)t . (25.43)

The second equation requires some more work:

d

dt
P01 + λ3P01 = λ1e

−(λ1+λ2)t . (25.44)

The integrating factor gives:

eλ3t d

dt
P01 + λ3e

λ3tP01 = λ1e
(λ3−λ1−λ2)t . (25.45)
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d

dt

(

eλ3tP01

)

= λ1e
(λ3−λ1−λ2)t . (25.46)

eλ3tP01 =
λ1

(λ3 − λ1 − λ2)
e(λ3−λ1−λ2)t + A . (25.47)

As before, at t = 0, there is zero probability that the patient is in state 2. Therefore

A = −
λ1

(λ3 − λ1 − λ2)
. (25.48)

So that:

P01(t) =
λ1

(λ3 − λ1 − λ2)

(

e−(λ1+λ2)t − e−λ3t
)

. (25.49)

And finally:

P02(t) = 1− e−(λ1+λ2)t −
λ1

(λ3 − λ1 − λ2)

(

e−(λ1+λ2)t − e−λ3t
)

. (25.50)

In this case, the expected time that the patient stays in state 0 is:

E (T0) =
1

λ1 + λ2
. (25.51)

The expected arrival time in state 2, given that the patient starts in X = 0 is:

E (T2) =

∫ ∞

0
t
d

dt
P02(t)dt (25.52)

which, after some work and using the relation:

∫ ∞

0
te−atdt =

1

a2

leads to:

E (T2) =
1

λ3
×

(
λ1 + λ3

λ1 + λ2

)

. (25.53)

25.4 Reversing the condition

Suppose that the progress of the condition can be reversed, so that there are transitions 2→ 1. In that

case, state 0 is still transient, but the system is not certain to end up in X = 2.

An example of this is given by the transition graph in figure (25.4).

We take the jump-rate matrix to have the form:

Q =






−λ1 λ1 0

0 −λ2 λ2

0 λ3 −λ3




 . (25.54)

Then, starting in X = 0, the transitions take the pattern: 0→ 1↔ 2. An example of the results is shown

in figure (25.5), where the probability of being in X = 0 decreases as before. However, there is soon an

equilibrium in which the probability is divided between X = 1 and X = 2.
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Figure 25.4: Transition graph for the progression of a stochastic chronic medical condition. The transition
probabilities are shown for a short time h. In this case, we allow for a reversibility of the condtion, which
is again stochastic, given by a transition from 2 to 1. Then, in the long run, 0 is transient, but states 1
and 2 are recurrent. An equilibrium will be created between states 1 and 2.

Of course, X = 0 is a transient state. However, we can obtain the equilibrium distribution

(

π0 π1 π2

)






−λ1 λ1 0

0 −λ2 λ2

0 λ3 −λ3




 =

(

0 0 0
)

. (25.55)

This gives, multiplying the vector by the matrix, in the first column:

π0 = 0

Then we have, for the third column:

π1(−λ2) + π2λ3 = 0 . (25.56)

The same equation follows from the second column. In fact, this equation is exactly that which we would

get from a consideration of detailed balance. That is, when in equilibrium the flow of probability between

the states exactly cancel out so that a stationary state arises.

π1P12(h) = π2P21(h) . (25.57)

that is:

π1λ2h = π2λ3h . (25.58)

giving us,

π2 = (λ2/λ3)π1 . (25.59)

In addition to this we have the normalisation:

π0 + π1 + π2 = 1 (25.60)

This can be written as:

0 + π1 + (λ2/λ3)π1 = 1 (25.61)

which gives:

π0 = 0 , π1 =
λ3

λ2 + λ3
, π2 =

λ2

λ2 + λ3
. (25.62)
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So for the process shown in figure (25.5), with parameters: λ1 = 0.5,λ2 = 0.5, λ3 = 0.2, we predict that

equilibrium should result in the distribution:

π0 = 0 , π1 =
0.2

0.5 + 0.2
≈ 0.286 , π2 =

0.5

0.5 + 0.2
≈ 0.714 .

The numerical solution of the Kolmogorov equations, as shown in figure (25.5), is in complete agreement

with this result, in the long run t→ +∞.

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

     time     

   
  P

ro
ba

bi
lit

y 
   

 
  λ1= 0.5         λ2=0.5     λ3=0.2 

 

 
 P00
 P01
  P02

Figure 25.5: Probabilities for the continuous-time Markov chain described by the jump-rate matrix,
equation (25.54). with the state initially in X = 0. The curves shown are for the rates: λ1 = 0.5,λ2 = 0.5,
λ3 = 0.2. The probability in the long-term is divided into an equilibrium between states X = 1, 2.

The exponential dependence of the probabilities derives from the jump-rate matrix. The exponent pa-

rameters are the eigenvalues of the jump-rate matrix.


