
Chapter 21

Compound Poisson processes

Suppose we have a Poisson process, but the value of each event is itself random. That is we have a

doubly random process, the timing is unpredictable and the value of each event is unpredictable. So for

example, the visits of customers to a web-site might be Poissonian (the rate of visits to the web-site), but

the amount each customer spends will also be unpredictable - so the value of the event itself is random.

Consider the thinning process discussed previously (see figure 21.1 below). We have a Poisson process of

intensity λ which we will take to be telephone orders at our pizza delivery service. Suppose that we have

two types of pizza: Type 1 (pepperoni) and Type 2 (margherita) and that 30% of customers order type

1, while 70% are orders for type 2. So any particular order has a probability p = 0.3 or being type I and

q = 0.7 of being type II.

The counting variable for pizzas is then:

N(t) = N1(t) + N2(t) (21.1)

Since N(t) is a Poisson process with rate λ then we have:

P [N(t) = n] = e−λt (λt)n

n!
n = 0, 1, 2 . . . . (21.2)

Then, since this is a Poisson distribution, we can immediately write down the expected number of orders

and the variance in this number over a certain time t:

E (N(t)) = λt , var (N(t)) = λt . (21.3)

And since, both N1(t) and N2(t) are Poisson, we have that:

E (N1(t)) = pλt , var (N1(t)) = pλt . (21.4)

and

E (N2(t)) = qλt , var (N2(t)) = qλt . (21.5)

So, we can calculate on average how many pizzas are ordered over any given time. Suppose the the price

of pizza 1 was c1 = £6 while the price of pizza 2 was c2 = £4, then (on average) how much money

(payments) would our restaurant take in over a time t?
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Let Q(t) be the quantity of money paid during a time t. This will be stochastic variable of course. We

can see this directly since:

Q(t) = c1N1(t) + c2N2(t) , (21.6)

and both N1,2(t) are stochastic.

It is easy to now estimate the average ‘takings’:

E (Q(t)) = c1E (N1(t)) + c2E (N2(t)) = c1pλt + c2qλt (21.7)

Therefore:

E (Q(t)) = (c1p + c2q)λt = E (C) (λt) (21.8)

or simply:

E (Q(t)) = E (C) E (N(t)) . (21.9)

The expected income is the expected income per pizza times the expected number of pizzas. A result

that we could have anticipated.

Figure 21.1: A simple compound Poisson process illustrated by a thinning process. The top line represents
the random orders of pizza with a (total) rate λ. Type 1 pizzas have a probability 0 ≤ p ≤ 1 of being
ordered, and type 2 a probability q = 1 − p. Then each process, pepperoni pizza orders and margharita
orders are themselves Poisson processes. Type I is a Poisson process with rate λ1 = λp and Type II is
Poisson with rate λ2 = λ(1 − p).

21.1 Expected value and variance

Consider a more general version of the pizza thinning process. Suppose the events we have in mind are

costs/values which can have any number of values. Let us denote the cost/value of the ith event by Ci,

and the number of event by time t, by N(t) as usual. In this case Ci is a random variable.

The following examples illustrate what we have in mind.
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event: N(t) cost: Ci

Examples: passage of cars on a road number of passengers per car

arrival of customers at web-site value of order

insurance claims value of claim

infection contact infection transmission

cardiac arrest degree of severity

bankruptcy value of loan

score in a match no. of points for each score

Then one could ask the same question, what would be the total expected value over a period of time [0, t]?
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Now a major assumption: let Ci be independent and identically-distributed. Then the ‘cost’ of each

event will have the same mean and variance:

E(Ci) = µ , var(Ci) = σ2 . (21.10)

Given that the event arrivals are Poissonian, then we can make assertions about the expected number of

events, and the variance in that number, by a time, t.

E(N(t)) = λt var(N(t)) = λt (21.11)

However, given that the number of events that arrive before t, which we denote as N(t), is uncertain, the

total value of the process:

Y (t) = C1 + C2 + C3 + · · · + CN(t) (21.12)

will be uncertain. Nonetheless, we can calculate the expected value of Y (t) and its variance as follows.

Theorem: If Y (t) is the total value of the compound Poisson process, with rate λ, and with each event

having mean value E (C) = µ, and variance, var (C) = σ2, then,

E(Y (t)) = µλt = E (C) E (N(t)) . (21.13)

var(Y (t)) = (µ2 + σ2)λt = E
(

C2
)

var (N(t)) . (21.14)

The first statement is a generalisation of the result already obtained (21.8).

Proof:
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Let us first, prove the statement

E(Y (t)) = µλt

For this purpose we use the conditional expectation theorem, in which we condition on the number of

events. That is:

E (Y (t)) = E (E (Y (t)|N(t))) . (21.15)

where the probability mass of N(t) is well-known. This becomes

E(Y (t)) =
∞
∑

n=0

E(Y (t)|N(t) = n)P (N(t) = n) . (21.16)

This trick now solves one problem, in the term E(Y (t)|N(t) = n) the number of event is no longer

uncertain it is given (or fixed) at n. In that case, we can calculate this term without difficulty:

E (Y (t)|N(t) = n) = E(C1 + C2 + . . . + Cn) (21.17)

that is,

E (Y (t)|N(t) = n) = E(C1) + E (C2) + · · · + E (Cn) = nE (C) = nµ . (21.18)

since the Ci all have the same mean, µ. Then it follows that:

E (Y (t)) =
∞
∑

n=0

nµP (N(t) = n) = µ
∞
∑

n=0

nP (N(t) = n) . (21.19)

But we recognise that:
∞
∑

n=0

nP (N(t) = n) = E (N(t)) = λt (21.20)

for a Poisson process.

This leads to the final result:

E (Y (t)) = µλt . (21.21)

Now for the variance:

var (Y (t)) ≡ E
(

Y 2(t)
)

− (E (Y (t)))2 . (21.22)

In order to calculate the expectation of Y 2(t), we use the same technique, conditioning on the number

of events. So;

E(Y 2) =
∞
∑

n=0

E(Y 2|N(t) = n)P (N(t) = n) . (21.23)

But

E(Y 2|N(t) = n)) = E(C1 + C2 + . . . + Cn)2 . (21.24)

Consider the n2 terms that arise from the expression:

(C1 + C2 + . . . + Cn)2 .

of these n2 terms, n terms will be like: C1C1, C2C2, . . . , CnCn, and the remaining (n2 − n) terms will

look like CiCj (i %= j).
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Now the Ci are identically distributed so:

E
(

C2
1

)

= E
(

C2
2

)

= · · · = E
(

C2
n

)

= σ2 + µ2 . (21.25)

This follows since: var (C) = σ2 = E
(

C2
)

− µ2.

Moreover, the Ci are independent, so that:

E(CiCj) = E(Ci)E(Cj) = µ2 , i %= j . (21.26)

With this in mind:

E(C1 + C2 + . . . + Cn)2 = n(σ2 + µ2) + (n2 − n)µ2 = nσ2 + n2µ2 . (21.27)

So returning to the calculation:

E(Y 2) =
∞
∑

n=0

(nσ2 + n2µ2)P (N(t) = n) = σ2
E (N(t)) + µ2

E
(

N2(t)
)

. (21.28)

Then the variance is just:

var (Y (t)) = E (Y (t)) − (E (Y (t)))2 = σ2
E (N(t)) + µ2

E
(

N2(t)
)

− µ2(E (N(t)))2 (21.29)

and this reduces to:

var (Y (t)) = σ2
E (N(t)) + µ2var (N(t)) (21.30)

which in turn, simplifies to:

var (Y (t)) = σ2λt + µ2λt = λt(µ2 + σ2) . (21.31)

So returning to the shop, the standard deviation on the takings can be calculated using the formula

(21.14). Recall that customer visit at a rate λ = 4 per hour, with µ = £10.00 and σ2 = 20.00(£2). Then

over a two-hour period the variance of the total takings would be:

var(Takings) = 4 × 2 × (102 + 10) = 960(£2)

and then the standard deviation is just the square root of this number: £30.98

21.2 Compound Poisson processes and money

Let’s conclude this chapter, and indeed this section, with a rather specialised application of Poisson

processes to money. In this case, we are thinking of the financial risk to a bank, or business, over a period

of many months. The purpose of this section is to, as usual, estimate expected values and standard

deviations of a stochastic process. The process we have in mind is a compound (inhomogeneous) process,

specifically insurance claims on an insurance company. Let us again assume that the amount/value of the

ith claim is Ci, and where Ci are independent and identically distributed random variables. We assume

that the claims arise/occur in the manner of an inhomogeneous Poisson process with a rate λ(t).
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21.2.1 Time-value of money

Now, in the world of money - costs and values are not always what they seem. For example £100 now, if

I invest it in a bank, will be worth £110 a year from now if I am lucky enough to find a bank that pays

10% annual equivalent interest. Similarly, a bill for £50 due in 6 months time, is worth less than £50

in today’s prices, for the same reason. I could cover that bill if I put aside say £48 today (in a savings

account).

This idea is called the time value of money. We say that future costs can be discounted (devalued if you

like) if we wish to calculate their present-day value, and we do this on the basis of (risk-free) interest-

bearing investments. We can calculate the discounting factor by considering savings. In compound

interest, if we put an amount of money V0 into an investment that returns interest m times per year,

then after 1 year it will be worth:

V1 = V0

(

1 +
r

m

)m

(21.32)

where r is the ‘interest rate’. This r is related to the annual equivalent rate (AER) R by:

(1 + R)V0 = V0

(

1 +
r

m

)m

(21.33)

that is

R =
(

1 +
r

m

)m

− 1 ≈ r , (r/m) ' 1 (21.34)

Then over t years we have:

V (t) = V0

[(

1 +
r

m

)m]t

(21.35)

Suppose m were large, many frequent interest payments (perhaps on a weekly/daily rate) then:

(

1 +
r

m

)m

≈ er , m ( 1 . (21.36)

so that:

V (t) ≈ V0e
rt (21.37)

and we call this the continuous-compounding approximation, and r the annual continuously-compounded

interest rate (called force of interest in insurance). So this formula tells us (approximately) the value

of an investment, worth V0 now, in t years time from now. So £100 invested now with r = 0.02 (per

annum), after 6 months (t = 0.5 years) will be worth £101 approximately.

We can use the same formula to work out the (future) cost of a bill in today’s prices, by reversing the

formula. A bill of £202 due for payment in 6 months time is worth £200 pounds at today’s prices. We

can see this, because if we save £200 now, in 6 months time we can cover the bill. Thus, future costs can

be discounted to find their present-day value. So if the future cost (at time t) is C, the present-day cost

is:

C0 = Ce−rt . (21.38)

We call e−rt the discount factor.

21.2.2 The expected cost

Suppose the bills/costs, let’s call them insurance claims but they could be mortgage loan defaults or

something similar. Then one possible question is - how much money do I need to have now in order

to cover these costs ? Well, since this is a random process we cannot answer that question. However,
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we can answer the related questions - approximately how much do I need, and what is the error in

that approximation. The equivalent mathematical quantities are the expected value and the standard

deviation. The expected value is the best estimate, and the standard deviation is a measure of the error

in that estimate. In financial terms this error is the amount of ‘risk’ I’m taking. The risk of running out

of money and going bust!

So, the present-day value of all these future claims, up until at time t, can be written as:

Z(t) = C1e
−rt1 + C2e

−rt2 + · · · + CN−1e
−rtN−1 + CNe−rtN (21.39)

where N(t) is the (random) number of events/claims/costs that arise, and t1, t2, . . . are the (random)

times at which these arise, and Ci are the costs accruing when they arise. The times, are of course

unpredictable, being dictated by an inhomogeneous Poisson process. Then the number of events, N(t) is

also unpredictable.

Let’s calculate E (Z(t)) using the usual trick of conditional expectation. In fact, the problem is just the

same as the frog crossing the road. We only have to think about what happens to the frog in a short

interval of time.

E (Z(t + h)) = E (E (Z(t + h)|X)) (21.40)

where X is the event in the time interval (t, t +h). Denoting z(t) = E (Z(t)), and A being the event that

a claim occurs and Ac being an event that a claim does not occur, in this interval we have:

E (Z(t + h)) = E (Z(t + h)|Ac) P (Ac) + E (Z(t + h)|A) P (A) (21.41)

Then this can be written as:

E (Z(t + h)) = E (Z(t))P (Ac) + E
(

Z(t) + Ce−rt
)

P (A) .(21.42)

that is:

z(t + h) = z(t) (1− λh + o(h)) +
(

z(t) + µe−rt
)

(λh + o(h)) . (21.43)

which gives us, taking h → 0:
dz(t)

dt
= λµe−rt . (21.44)

This can be integrated directly, and using the fact that z(0) = 0, we get:

z(t) =
λµ

r

(

1 − e−rt
)

(21.45)

that is

E (Z(t)) =
λµ

r

(

1 − e−rt
)

(21.46)

and whenever rt → 0, that is there is zero interest rate, or we are thinking in the short term:

E (Z(t)) ≈ λµt (21.47)

as before (21.13). Now consider the case rt ( 1, that is interest rates are extremely large, or we are

thinking about the long-term, then effectively we have:

E (Z(t)) ≈
λµ

r
. (21.48)
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This tells us how much money we should hold now to cover us in the long term.

As for the variance in these costs, we apply the same idea yet again. Let: W (t) = Z(t)2, and w(t) =

E (W (t)), then:

E (W (t + h)) = E (W (t + h)|Ac)P (Ac) + E (W (t + h)|A) P (A) . (21.49)

Then after a similar calculation we get

E (W (t + h)) = E (W (t)) P (Ac) + E
(

(Z(t) + Ce−rt)2
)

P (A) , (21.50)

giving us:

w(t + h) = w(t) (1 − λh + o(h)) +
(

w(t) + 2µe−rtz(t) + E
(

C2
)

e−2rt
)

(λh + o(h)) (21.51)

This simplifies to:
d

dt
w(t) = 2µλe−rtz(t) + E

(

C2
)

λe−2rt . (21.52)

We note that, from (21.45):
dz(t)

dt
= µλe−rt , (21.53)

so this equation can be written as:

d

dt
w(t) =

d

dt
[z(t)]2 + E

(

C2
)

λe−2rt (21.54)

And this equation can be integrated immediately, bearing in mind the initial conditions, w(0) = z(0) = 0.

This leads to the final result:

w(t) = z(t)2 + E
(

C2
) λ

2r

[

1 − e−2rt
]

(21.55)

Since, var (Z(t)) ≡ E
(

Z(t)2
)

− (E (Z(t)))2 = w(t) − z(t)2, then it follows that:

var (Z(t)) = E
(

C2
) λ

2r

[

1 − e−2rt
]

. (21.56)

21.2.3 Example

Suppose ticket sales at an airline arrive as a Poisson process, with rate λ. The airline decide that it will

increase its prices exponential as the departure date approaches. Therefore, if the current time is t = 0

and the date of departure is t = T , the cost of a ticket, bought at a time t > 0 will be,

Cert (21.57)

Calculate the expected revenue (sales income) from ticket sales in this case.

This problem is very similar to the insurance problem in which the future costs are discounted, except

in this case the payments escalate. We have Cert instead of Ce−rt. That is, mathematically all we are

doing is changing the sign of r. So we can use this fact to get the final answer. In this case, the ticket

price C0 is not a random variable so we can simply say that:

µ = E (C) = C0
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Let’s start with the final answer (21.46) and change r → −r, and given we have the time of departure T .

then we have, the expected sales revenue from tickets using this pricing model:

E (Z(T )) =
λC0

r

(

erT − 1
)

. (21.58)

Now if the pricing rise is very slow: erT ≈ 1 + rT and thus:

E (Z(T )) ≈ C0λT (21.59)

But if rT ( 1 then the revenue is much greater than this figure,

E (Z(T )) ≈
λC0

r
erT (21.60)


