
Chapter 15

Ergodic theorem

The ergodic theorem ties together the notions of averaging over time and averaging over a distribution.

If we consider the example of the shoppers at the shops S and T . Suppose we believe that the process is

described by a Markov chain and we wish to determine the equilibrium state (that is the market share).

Then there are at least two ways to do this. We sample say 200 shoppers on any given week-end and ask

them where they shop. We use the sample data (experiment) to estimate the parameters (theory) for the

market share (that is πS and πT ).

Now an alternative method would be to choose 20 shoppers and follow these individuals over a period

of 10 weeks, which again give us 200 data points. In an extreme case we could follow one person over

a period of 200 weeks. The thrust of the ergodic theorem is that allowing the shoppers to explore the

states of the system over time is equivalent to taking a snap-shot of a large group at a specific time. Of

course, this assume that the system is governed by a Markov chain.

15.1 The theorem

The law of large numbers for irreducible Markov chains was discussed in the previous chapter. This idea

can be extended one step further to arrive at the ergodic theorem :

For an irreducible Markov chain:

lim
n→∞

sj(n) = πj =
1

µj
(15.1)

where we define,

µj ≡ E (Tj) (15.2)

as the expected return time for state j: the expected number of steps between two consecutive visits to

j. This is also called the recurrence time.

The first half of the ergodic theorem was proven in the previous chapter, and was called the law of large

numbers in that context. Let us now focus on the second half which deals with recurrence time.

PROOF:

First of all, suppose we start in some state, let’s call it j, and then make an n-step Markov chain process.

Then there will be N occurrences of j in the n-step process N > 1. This means there are N − 1 returns

to state j, on or before the n-step.
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Figure 15.1: Return times, T1, T2 · · ·TN−1, for an ergodic Markov chain. The chain runs for n time-steps
with N − 1 returns in this time, and a further returns in the future.

Let T be the discrete random variable that defines the number of steps between visits to the starting

point j. We call these return times. So T1 is the number of steps taken for the first return. Of course this

is a random variable; one cannot predict exactly how many steps this random process will take. Then

denoting all the return times as T1, T2, . . . , TN−1. Clearly it might take some time, after the start of the

sequence to make the first visit to j. Then clearly:

N−1
∑

i

Ti ≤ n . (15.3)

The process is illustrated in figure (15.1).

Beyond our sample sequence of n steps, there will be another visit to j at some unknown time in the

future, the Nth return:
N

∑

i

Ti > n . (15.4)

This gives us a squeezing inequality, since we can write:

1

N
(T1 + T2 + T3 + · · · + TN−1) ≤

n

N
≤

1

N
(T1 + T2 + T3 + · · · + TN) (15.5)

The left- and right-hand-sides are in the form of sample means. We can now apply the law of large

numbers (in the strong form), taking n, N → ∞ gives us:

lim
N→∞

1

N
(T1 + T2 + T3 + · · · + TN ) = E (T ) = µ . (15.6)

Similarly;

1

N
(T1 + T2 + T3 + · · · + TN−1) =

(

N − 1

N

)

1

N − 1
(T1 + T2 + T3 + · · · + TN−1) (15.7)

Applying this to the inequality (15.5) gives the squeezing effect desired:

lim
N→∞

N − 1

N
lim

N→∞

1

N − 1
(T1 + T2 + T3 + · · · + TN−1) ≤ lim

N,n→∞

n

N
≤ lim

N→∞

1

N
(T1 + T2 + T3 + · · · + TN )

(15.8)
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this gives us,

lim
N→∞

(

N − 1

N

)

µ ≤ lim
N→∞

n

N
≤ µ . (15.9)

So we arrive at the conclusion, with certainty, in the long run:

lim
N→∞

n

N
= µ (15.10)

Although we started the discussion for some state j, the choice of state was arbitrary, so the same

argument applies to any (and all) states. That is, reinserting the subscripts, and flipping this upside

down, we can write

lim
n→∞

Nj(n)

n
=

1

µj
(15.11)

for all j, as required.

There is nothing surprising in the ergodic theorem, but it is still a profound result. Like most good

theorems it makes perfect sense. It states that if we have a Markov chain that is irreducible and aperiodic

(which means that all the states communicate with each other and they do so in a random aperiodic

manner) then over time, state j say, will be visited a certain fraction of times f , and in the long run (law

of large numbers) this fraction tends to a limit. Then, over a time n we would expect the state to visit

(return) fn times to j and then the time between visits (on average) would be the total time n divided

by fn. That is the mean return time would be n/(nf) = 1/f . Similarly, if we were to choose a random

point in the sequence, then the probability that, at this point, the system would be in state j, would be

just equal to the fraction of time spent in j , that is the fraction of occurrences of j, namely f .

Just a word about the requirement for aperiodicity. This ensures the states are ’scrambled’ and that the

signature of the initial conditions is lost. That is, there is no correlations is time between states. And a

word of warning, before going on to some applications. Ergodic Markov chains are perfect mathematical

entities, but very few real-world systems have such ideal properties. So, most applications in which

Markov chains are invoked are not Markovian at all. However, non-Markovianity of the real world is

much more interesting.

15.2 Applications

Returning to the two-state chain in the previous chapter, the ergodic theorem addresses the expected

number of steps until the state repeats. For example we can estimate how many steps between the 1

state repeating.

According to the ergodic theorem:

µ1 =
1

π1
= 3

2 .

That is, given that a 1 occurs in a sequence, the expected number of steps until the next 1 occurs is 1.5.

For the state 0 we have:

µ0 =
1

π0
= 3 .

which is twice as long. Again, these results can be tested (experimentally) using Monte Carlo simulation.

A second example involves tossing a coin. The state of the system (HEADS or TAILS) we will denotes

as 1 or 0, respectively. Suppose that we toss the coin many times and record the sequence to give us a

Markov chain. If 0 ≤ p ≤ 1 is the probability of HEADS (1) and q = 1 − p is the probability of TAILS



102 CHAPTER 15. ERGODIC THEOREM

(0), then:

P =

(

q p

q p

)

(15.12)

Let us test the ergodic theorem in this context since we know a great deal about coin sequences.

For example we know the following that, given X0 = 1 the probability of the next HEADS occurring after

i tosses is:

P (T = i) = qi−1p i = 1, 2, 3 . . . . (15.13)

where T is the numbers of tosses, or equivalently the time until the next HEADS occurs.

But this is just the geometric distribution, and it is simple to calculate E (T ), which will just be µ1, the

recurrence time for X = 1. We have, the well-known result (see earlier lectures):

µ1 = E (T ) =
∞
∑

i=1

iqi−1p =
1

p
(15.14)

as the mean of a geometric distribution.

p
qp

q
01

Figure 15.2: Transition graph for a coin toss. The state of the coin is X ∈ {0, 1}. The state HEADS

corresponds to X = 1, and the probability of HEADS on any toss is p.

Let us compare this result with the prediction of the ergodic theorem. For a Markov chain with the given

transition matrix, the equilibrium distribution is given by:

(π0 π1) = (π0 π1)

(

q p

q p

)

(15.15)

with the solution:

π0 = q π1 = p . (15.16)

Then, according to the ergodic theorem we should have a recurrence time for state 1 given by:

µ1 =
1

π1
=

1

p
. (15.17)

This is in complete agreement with the result derived independently on the basis of the geometric distri-

bution: equation (15.14).
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15.3 Monte Carlo simulation

We complete this chapter with a test case in which all the principles of the ergodic theorem are applied.

Consider a 4-state system with the transition matrix:

P =













0.1 0.2 0.0 0.7

0.0 0.2 0.4 0.4

0.4 0.3 0.0 0.3

0.3 0.1 0.3 0.3













. (15.18)

The transition graph for this chain is displayed in figure 15.3
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Figure 15.3: Transition graph for the 4-state Markov chain.

Firstly we determine the equilibrium state of the system by numerical methods, using the formula (13.28)

that:

lim
n→∞

Pn =













π

π

...

π













. (15.19)

Taking n = 50 we find:

P50 ≈













0.2214 0.1787 0.1934 0.4064

0.2214 0.1787 0.1934 0.4064

0.2214 0.1787 0.1934 0.4064

0.2214 0.1787 0.1934 0.4064













(15.20)

So that:

π0 = 0.2214 π1 = 0.1787 π2 = 0.1934 π3 = 0.4064

and consequently the recurrence times are, approximately:

µ0 = 4.517 µ1 = 5.596 µ2 = 5.171 µ3 = 2.461
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A Monte Carlo simulation of the process can be implemented to study the time-average of the processes.

For a sample of n = 104 steps we find the fraction of time in each state to be:

s0 = 0.2193 s1 = 0.1840 s2 = 0.1879 s3 = 0.4088 .

These values are good approximations to the true equilibrium distribution. For a larger sample, n = 105,

we find typical values:

s0 = 0.2217 s1 = 0.1799 s2 = 0.1928 s3 = 0.4056 .

which are in the neighbourhood of the equilibrium distribution values.

Let us now conclude with a brief look at the recurrence times. In this case the Monte Carlo simulation

runs for n = 105 steps. The return times are recorded and a sample average is made. An example of the

results are the return times:

µ1 ≈ 5.5515 and µ3 ≈ 5.1854

which again, tally with the theoretical return times through the law of large numbers expressed as the

ergodic theorem.

15.4 Internet searches

Web pages are like destinations that one visits temporarily while surfing the internet. These web pages

are connected to each other by hyperlinks embedded in the page by the authors. In this way we can view

the web pages as being a connected network. This is not the physical network of optical fibres between

sites that forms the internet, it is a virtual network created by the authors of the webpages. Suppose one

arranges that a person or robot maps out all these connections.

Suppose information (perhaps in the form of key words) is distributed across the internet. The internet

connects physical sites but also webpages through hyperlinks. Suppose we viewed this network as a kind

of Markov chain transition diagram in which the hyperlinks play the role of edges. Then the connections

can be stored in an adjacency matrix, X . For a network with N nodes A is an N × N matrix, and we

indicate a link from node i to node j (i → j) by a 1 in row i and column j. If there is no connection

(i ! j) then a zero is entered, that is:

Aij =

{

1 , i → j

0 , i ! j
1 ≤ i, j ≤ N . (15.21)

The ‘connectedness’ of each node can be measured by the number of links in and out. We define the

out-degree as the total number of links out from the node. So the out-degree of node j is simply the

number of ones in row j, that is:

kout
j ≡

N
∑

i=1

Aji . (15.22)

Similarly the in-degree of node j is the total number of ones in column k of the adjacency matrix, that is:

kin
j ≡

N
∑

i=1

Aij (15.23)
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The question now arises, given N nodes with all these connections, which of these nodes is the most

useful place to visit first ? That is, is there any method of capturing the collective knowledge of all the

various webpage authors in order to rank the pages in order of importance so that they come high in

our list ? For our web page network, a high in-degree indicates that a certain node/web page is viewed

as important by the other nodes, since it has many referrals. On the other hand, a node with a high

out-degree might also be a valuable place to visit since it references many other pages. The following

section briefly outlines a technique that uses Markov chains to arrive at the solution of the problem.

15.4.1 Page Ranking algorithm

Suppose we view the network as a recurrent Markov chain, then one could view the most ‘important’

state as the one where most time is spent. That is, the node corresponding to the maximum in the

equilibrium distribution. This is the basic idea of the PageRank R© algorithm that the founders of Google

developed 1 to great commercial success.

So the only question is how to define the transition matrix for such a system. The simplest answer would

be to close off the internet into a finite set of nodes. Then give non-zero transition probabilities to the

nodes that are linked. and give these equal weighting, so for kout
i )= 0 we take:

P (1)
ij =

Aij
∑

k Aik
=

Aij

kout
i

, kout
i )= 0 . (15.24)

Now many webpages are dead-ends (absorbing states). So in principle, once we hit those states we spend

the rest of the time there. So these could be wrongly indicated as being important. So we artificially

introduce transitions away from these states to ensure the chain in recurrent. So for kout
i = 0, that is

for an absorbing state i, one with no outgoing connections, we decide to connect to all states, and with

equal probability so that:

P (1)
ij =

1

N
, kout

i = 0 , i = 1, 2, 3 . . . , N . (15.25)

The denominator (normalising factor) ensures that the matrix is stochastic whatever the state i:

N
∑

j=1

P (1)
ij = 1 , 1 ≤ i ≤ N . (15.26)

The choice (15.24) means that any disconnected nodes are ignored. One way of including visits to such

pages (say from node i) even though they are not directly hyperlinked from i, would be to allow a small

non-zero probability, which we call d′ ≥ 0, of access to these states. This redistributes the possible

transitions to unlinked states equally and randomly, rather like (15.27). So a refinement of the model

would be:

P (2)
ij =











d
Aij

kout
i

+
(1 − d)

N
, kout

i )= 0

1

N
, kout

i = 0
(15.27)

This ensures that we have an aperiodic irreducible Markov chain.

The value of 0 ≤ d ≤ 1 is open to choice, and is called the damping factor. The larger the value of d, the

more steps are taken away from states with high out degree. So as d → 1, the states with most links are

1Brin, S. and Page, L. (1998) The Anatomy of a Large-Scale Hypertextual Web Search Engine
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less important, in terms of their ranking. Conversely, as d → 0, then more importance is given to pages

that have many links.

The equilibrium distribution, r, is the N -element row vector that is the solution of the equation:

r = rP (2) . (15.28)

So the very basic version of the PageRank algorithm for ordering takes the node corresponding to the

largest component of r and ranks this highest. The next largest component of r is placed second and so

on assigning last place in ranking to the note/state with the smallest component of r.

We consider an example of a group of 6 web pages which are connected by hyperlinks as shown below

(figure 15.4).

Figure 15.4: Links within a network of N = 6 nodes.

The ranking depends on the value of d as shown in the table below and in figure 15.5. Clearly for large

d, that is when transitions strongly favour direct links, the highest ranked node is 3. This would be

expected given the high in-degree and high out-degree that this node possesses. It is interesting to see

that node 6, which appeared as a dead end (absorbing state) moves up to second place in the ranking.

Thus a page which has many different links pointing towards it could be viewed as the ‘final word’ on

the subject.

Ranking Ranking

Node label i out − degree kout
i in − degree kin

i ri for d = 0.1 ri for d = 0.9

1 3 1 0.205 0.115

2 3 2 0.165 0.164

3 3 4 0.091 0.279

4 2 1 0.219 0.133

5 1 1 0.200 0.102

6 0 3 0.121 0.207
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Figure 15.5: Ranking within the network shown in figure 15.4.

If we change the network connections slightly, as shown in figure 15.6, which is slightly sparser, and node

6 has a lower in-degree the ranking changes as shown in figure 15.7.

Figure 15.6: Links within a network of N = 6 nodes, with a slightly sparser structure compared to figure
15.4.

2 and 6 share the same ranking values for all values of d.
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Figure 15.7: Ranking within a network of N = 6 nodes as shown in figure 15.6. Only 5 lines appear since
nodes 2 and 6 have the same rankings for all values of d.


