
Chapter 13

Properties of Markov chains

13.1 Stationary distribution in a Markov chain

A M arkov chain describes the random (memoryless) transi t ions between a set of sta tes. Suppose tha t this
model fi ts the shopping pa t terns of consumers. T ha t is, customers will choose a supermarket a t random
from week to week , bu t their choice for nex t week depends on where they shopped this week .

L et us assume tha t there are only two sta tes in this chain: Sainsbury’s and Tesco (or S and T , for shor t).
For example, we suppose tha t a Sainsbury’s customer this week has a 70% probabili ty of shopping there
again nex t week , while there is a 30% probabili ty tha t the customer will swap to Tesco. Conversely,
suppose tha t a customer shopping a t Tesco this week has an 80% chance of staying wi th Tesco for nex t
week , and only a 20% chance of defect ing to Sainsbury’s. L et us assume tha t this is a M arkov process,
so customer behaviour depends only on the present and not on the past .

L et the sta te S be sta te 0 and the sta te T be sta te 1. T hen this da ta for probabili t ies can be expressed
as a t ransi t ion ma trix where the row denotes the present sta te, and the column the fu ture sta te. T hen,
for this case we have:

P =

(

0.7 0.3
0.2 0.8

)

(13.1)

where, first-row first-column, PSS = 0.7, denotes the probabili ty of loyal ty to Sainsbury’s, and so for th.

Suppose a t the present the market share of customers is in the ra tio: 3:2 for S : T . T ha t means, if I
choose a person a t random from the popula tion of shoppers, this week , there is a 60% chance tha t they
are a customer a t S . W ha t is the probabili ty tha t , any person chosen a t random nex t week will be a
customer a t S ? T ha t is, wha t will be the market share nex t week ?

To answer this quest ion, we ’condi t ion on’ where this person might have shopped this week . So denoting
the state of this person nex t week as X1 and the sta te of the person this week as X0 , then:

P (X1 = S) = P (X1 = S |X0 = S)P (X0 = S) + P (X1 = S |X0 = T )P (X0 = T ) . (13.2)

T ha t is,
P (X1 = S) = 0.7 × 0.6 + 0.2 × 0.4 = 0.5 . (13.3)

Since the person is chosen a t random, this means tha t the market share of S will go down from 60% (this
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week) to 50% (nex t week). T ha t is the probabili ty mass has changed. Similarly for

P (X1 = T ) = P (X1 = T |X0 = S)P (X0 = S) + P (X1 = T |X0 = T )P (X0 = T ) . (13.4)

For M arkov chains involving n sta tes, the par ti t ion rule applied to the probabili ty of being in sta te k

takes the form:

P (X1 = k) =
n

∑

j=1

P (X1 = k|X0 = j)P (X0 = j) . (13.5)

We can wri te this in ma trix form. L et t ing the row vector p(1) be the probabili ty distribu tion after one
step and p(0) be the row vector of probabili ty dist ribu tion before the step,

p(0) =
(

p
(0)
1 · · · p

(0)
j · · · p(0)

n

)

.

T hen, denoting the transi t ion ma t rix as:

Pij ≡ P (X1 = j|X0 = i) (13.6)

the equa tion (13.5) can be wri t ten as:

p(1)
k =

n
∑

j=1

p(0)
j Pjk (13.7)

or in vector nota tion:
p(1) = p(0)P . (13.8)

So, in this case,

p(nex t week) =
(

0.6 0.4
)

(

0.7 0.3
0.2 0.8

)

. (13.9)

T ha t is:
p(nex t week) =

(

0.5 0.5
)

. (13.10)

In general, for a homogenous M arkov chain, which is the case here, we have:

p(week m) = p(week m − 1) × P . (13.11)

So tha t . i tera ting gives:
p(week m) = p(week m − 2) × P × P . (13.12)

Continuing in this fashion leads to:

p(week m) = p(week 0) × Pm . (13.13)

T his rela tes the star t ing distribu tion to the distribu tion m weeks into the fu ture. For example after 2
weeks, we find tha t:

p(week2) =
(

0.6 0.4
)

(

0.7 0.3
0.2 0.8

)2

. (13.14)

Now since:

P2 =

(

0.7 0.3
0.2 0.8

)2

=

(

0.55 0.45
0.30 0.70

)

(13.15)
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this gives:

p(week2) =
(

0.6 0.4
)

(

0.55 0.45
0.30 0.70

)

=
(

0.45 0.55
)

. (13.16)

T ha t is, after the second week , the market share has shifted even more to T against S , albei t by a smaller
amount .

T he quest ion is, does this loss of customers stabilise a t some point ? A nd, if so, wha t is the equilibrium

market share ?

L et us denote this (unknown) equilibrium distribu tion by the vector π . T hen, by i ts very defini t ion, the
equilibrium sta te will not change form one week to the nex t . T his implies tha t:

π = πP . (13.17)

T his linear (ma t rix) equa tion can be recast into a more familiar form, by conver t ing to column vectors.
Taking the t ranspose of both sides of equa tion(13.17) gives:

PTπT = πT . (13.18)

T hus, we recognise tha t the sta te we are interested in π is simply the eigenvector of the ma t rix PT wi th
eigenvalue 1. T herefore calcula ting π is a familiar problem, however we note tha t the solu tions may

not be unique. T ha t is, the eigenvalue 1 may be degenerate (repea ted). R ecall tha t an eigenvector only
provides a direction, tha t is a rela t ion for the ra tios of the elements of the vector. T he normaliza tion is
a separa te condi t ion 1 .

So we impose an addi t ional constraint on the eigenvector:

n
∑

i=1

πi = 1 , (13.19)

which is simply our requirement tha t the total probabili ty must add to 1.

L et ’s return to the shopping problem, and we can ei ther solve (13.17) or (13.18). L et us take the rou te
of (13.17):

(

πS πT

)

=
(

πS πT

)

(

0.7 0.3
0.2 0.8

)

. (13.20)

Simply mul tiplying ou t gives two simul taneous equa tions:

πS = 0.7πS + 0.2πT (13.21)

πT = 0.3πS + 0.8πT (13.22)

(13.23)

Both equa tions lead to the same resul t (as they should):

πT = 1.5πS (13.24)

T ha t is, the equilibrium sta te is tha t Tesco will have 1.5 times the number of customers of Sainsbury’s.

1That is, if u is an eigenvector of the matrix A with eigenvalue λ, then it is not unique since au is also an eigenvector,
for any constant (scalar) a. This follows from the argument: A(au) = aAu = aλu = λ(au)
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More precisely, since the total probabili ty should add to 1, equa tion (13.19):

πS + πT = 1 (13.25)

T his normalization equa tion gives us:
πS + 1.5πS = 1 (13.26)

therefore, πS = 0.4 and πT = 0.6. T ha t is, the market share will eventually stabilise wi th Sainsbury’s a t
40% and Tesco a t 60%. W hen there are many sta tes, the linear algebra becomes more complex . However,
a simple compu ter program will give the answer in this case.

We note tha t , in the long run, star t ing from any ini t ial distribu tion, we finish in the equilibrium sta te
eventually, tha t is

π = p(star t) lim
n→∞

Pn . (13.27)

T his leads to the impor tant resul t tha t , if such a unique equilibrium sta te does exist:

lim
n→∞

Pn =













π
π
...

π













. (13.28)

T ha t is:
lim

n→∞
(Pn)ij = πj for all i . (13.29)

A gain, we emphasise tha t this is true, if and only if, the equilibrium sta te is unique.

T his can be verified, since, for the j th column of equa tion (13.27), we have (given an arbi trary star t ing
vector p(0)):

πj =
n

∑

i=1

p(0)
i Pij =

n
∑

i=1

p(0)
i πj = πj

n
∑

i=1

p(0)
i = πj . (13.30)

T his point can be illustra ted for the shopping ma trix , since (to 4 decimal places):

P4 =

(

0.4375 0.5625
0.3750 0.6250

)

. (13.31)

W hile,

P10 ≈

(

0.4006 0.5994
0.3996 0.6004

)

. (13.32)

T ha t is, the rows are beginning to converge towards the equilibrium dist ribu tion. Taking a much large
number, say n = 100 gives, again to 4 decimal places:

P100 ≈

(

0.4000 0.6000
0.4000 0.6000

)

. (13.33)

13.2 Communications

In a M arkov chain the connect ions between sta tes are defined by the transi t ion ma trix . T his ma trix
contains the one-step t ransi t ion probabili t ies. We say tha t sta te (j) communicates wi th sta te (k), denoted
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j → k, if the M arkov chain, star t ing a t j can reach k (in a fini te number of steps). T ha t is, given the
transi t ion ma trix P, there exists a fini te m such tha t ,

(Pm)jk > 0 . (13.34)

C onversely, one can say tha t (j) does not communica tes wi th sta te (k), denoted j ! k, if the M arkov
chain, star t ing a t j can never reach k, no ma t ter how many steps taken, tha t is:

(Pm)jk = 0 , for all m ≥ 0 . (13.35)

C learly if:
j → k k → l ⇒ j → l .

EXAMPLE

•0
    •1

  •2  
  •3   

C onsider the transi t ion graph shown above for a M arkov chain involving 4 sta tes; { 0, 1, 2, 3 } .

If we examine the communica tions from sta te X = 2, we note the following.

2 communica tes direct ly (tha t is by a one-step t ransi t ion) wi th 0 and 3.

2 also communica tes wi th 1 (indirect ly) via 0 (in a two-step transi t ion).

2 also communica tes wi th i tself, through a 3-step process.

We can summarise the communica tions as follows:

2 → { 0, 1, 2, 3 } .

Similarly
3 → 3

bu t not wi th any other sta tes.

Now since 1 → 2, then 1 is connected (communica tes) wi th all the sta tes that 2 communica tes wi th. So:

1 → { 0, 1, 2, 3 } .

and similarly:
0 → { 0, 1, 2, 3 } .

If two sta tes communicate wi th each other, tha t is, j → k and k → j then we wri te: j ↔ k. Fur thermore
if

i → j and j → k ⇒ i → k .

We can prove this by noting tha t: i → j implies tha t there exists an m ≥ 0 such tha t: (Pm)ij > 0 and
tha t there exists an n ≥ 0 such tha t: (Pn)jk > 0 .

I t follows tha t:
(

Pm+n
)

ik
=

∑

s

(Pm)is (Pn)sk > 0 ,
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and thus tha t i → k.

A pair of sta tes tha t communica te wi th each other are in the same equivalence class. If all the sta tes
communica te wi th each other, we say the the M arkov chain is irreducible. In general this is not the case,
and the sta tes will be grouped into subsets.

13.3 Recurrent and transient states

T he sta tes in a M arkov chain are classified according to the communica tions of the sta tes in the subset .
L et us consider two impor tant classifica tions of subsets based on the sta tes. A sta te can ei ther be transient

or recurrent, bu t not both.

For any sta te j ,let us consider returning to j (for the first t ime) after n steps (or equivalently after a time

n): T he first return time,R, for sta te j can be defined as the random variable:

Rj = min n : P (Xn = j|X0 = j) > 0 . (13.36)

T hen we define a transient sta te as one for which there is a fini te probabili ty of never returning. T ha t is:

P (Rj < +∞) < 1 transient . (13.37)

A recurrent sta te, on the other hand, is one for which

P (Rj < +∞) = 1 recurrent . (13.38)

T ha t is, i t is cer tain tha t the sta te will return a t some t ime. T hese defini t ions are exclusive, and thus, a
sta te is ei ther transient or recurrent .

If there is cer tainty of return in a fini te t ime, then for an infini te t ime the returns can happen infini tely
often. A recurrent sta te will return wi th cer tainty and infini tely often. T hus, since:

lim
n→∞

(Pn)jj > 0 , (13.39)

∞
∑

n=0

(Pn)jj = +∞ . (13.40)

W hile for a t ransient sta te we will have:

lim
n→∞

(Pn)jj = 0 , (13.41)

tha t is the t ransient sta te will only be revisi ted a fini te number of t imes, and in par ticular, the series
below converges:

∞
∑

n=0

(Pn)jj < +∞ . (13.42)

In the example shown above, the sta te 3 is absorbing (and hence recurrent), while the subset { 0, 1, 2 } are
transient sta tes since there is a fini te probabili ty tha t , once the system leaves any of these sta tes i t has
a fini te probabili ty of ending up in 3 from which there is no return.
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13.3.1 Classes

If sta te i is recurrent and i ↔ j then j is also recurrent .
If sta te i is t ransient and i ↔ j then j is also transient .

T hese sta tements are complementary, and only one of these requires a proof. G iven tha t i ↔ j , then
there exist m, n such tha t (Pm)ij > 0, (Pn)ji > 0. Now consider the recurrence of j:

(

Pn′

)

jj
=

∑

r,s

(Pn)js

(

Pn′−m−m
)

sr
(Pm)rj ≥ (Pn)ji

(

Pn′−m−n
)

ii
(Pm)ij . (13.43)

Now, i t follows tha t:
lim

n′→∞

(

Pn′
)

jj
= (Pn)ji lim

n′→∞
(Pn)ii (Pm)ij > 0 , (13.44)

and hence tha t sta te j is recurrent .

So t ransience and recurrence is a proper ty common to a subset of sta tes, and we use this to define our
classes.

T here are special sub-classes, for example absorbing sta tes are recurrent , trivially. B u t we also have sta tes
tha t are recurrent in a special way - periodic states.

13.3.2 Periodicity

T he period d(j) of a sta te j is the grea test common divisor (g.c.d.) of the return times to j .

d(j) = gcd {n : pjj (n steps) > 0 }

If d(j) = 1 tha t is the period is one, then j is termed an aperiodic state.

EXAMPLE

•1

  !!
!!

!!
!!

•2  

•0

  """"""""

  
•3

  #
#
#
#
#
#
#
#
#
#
#
#
#
#

T his chain has 0, 1, 2, 3 as a (recurrent) irreducible set . T his is clear from the following analysis.

0   

  $
$$

$$
$$

$ 3   1   0 ⇒ 0 → { 0, 1, 2, 3 }

2

  
%%%%%%%%

1 → 0 and 0 communica tes wi th 0,1,2,3 ⇒ 1 → { 0,1,2,3 }
2 → 1 and 1 communica tes wi th 0,1,2,3 ⇒ 2 → { 0,1,2,3 }
3 → 1 and 1 communica tes wi th 0,1,2,3 ⇒ 3 → { 0,1,2,3 }
⇒ all sta tes intercommunica te ⇒ irreducible set / chain.
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Note tha t 3 is recurrent (all sta tes of an irreducible chain are recurrent)

3   

  $
$$

$$
$$

$ 1   0   3 3 steps

1   0   2   1   0   3 6 steps

etc . . .

Sta te 0 has period: d(0) = 3, so too d(1) = d(2) = 3.

EXAMPLE

• 0   

  &&
&&

&&
&&

• 1

  
•2

  

H ere, sta te 2 is absorbing. O nce 2 is reached, the system stays there forever.

T hen the subset { 0, 1, 2 } is not irreducible.

In fact , sta tes 0 and 1 are transient. T ha t is there is a fini te probabili ty tha t , star t ing a t 0 (or 1) one
never returns. From 0, one can go to the absorbing state 2 and never return.

So the set of sta tes { 0, 1, 2 } can be par ti t ioned into two subsets:

transient { 0, 1 } , absorbing { 2 } .

EXAMPLE

Consider a system wi th 3 sta tes represented by the (equivalent) transi t ion graph and transi t ion ma t rix
shown below:

•00.2
  0.8   •1

0.2

  

0.5

  

0.3

  
•2

0.6

  

0.4

  
⇐⇒ P =







0.2 0.8 0.0
0.5 0.2 0.3
0.0 0.4 0.6







T his example is an irreducible chain, every sta te communicates wi th every other sta te. E very sta te
is recurrent and aperiodic.

13.3.3 Identification by computation

Consider the classes (subsets) of the following chain:
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P =













0.2 0.8 0.0 0.0
0.5 0.5 0.0 0.0
0.1 0.2 0.3 0.4
0.0 0.0 0.0 1.0













⇐⇒

•0
    •1

  
  

•3
  

•2
    

  !!!!!!!!!!!

  

O n examina tion, we can identify the subsets of this set of states.

recurrent { 0, 1 } ; absorbing/recurrent { 3 } ; transient { 2 } .

A lazier method of analysis employs the compu ter to study the return probabili ty. R ecall tha t we spoke
of t ransient and recurrent sta tes in terms of the long-term transi t ion ma trix . In par ticular for a transient
sta te:

lim
n→∞

(Pn)ii = 0 . (13.45)

We can calcula te the t ransi t ion probabili t ies direct ly for long times, for example n = 50 steps. We find
tha t:

P50 =













0.3846 0.6154 0 0
0.3846 0.6154 0 0
0.1648 0.2637 0.0000 0.5714

0 0 0 1.0000













.

C learly, this ma t rix does not obey the rule (13.29) and one can conclude tha t a unique equilibrium sta te
does not exist . T here will be more than one equilibrium and these can be identified from this expression.

A long the diagonal of the ma trix we have the return probabilit ies for each sta te corresponding to n = 50
steps. T he fact tha t;

(P50)22 ≈ 0 , suggests lim
n→∞

(Pn)22 = 0 .

T ha t is, after a sufficiently long time (large number of steps) the probabili ty of return tends to zero, and
we have a t ransient sta te. We also note tha t this calcula tion confirms tha t:

lim
n→∞

(Pn)33 = 1 .

so tha t sta te 3 is absorbing, tha t is { 3 } is a recurrent subset . O f more interest is the subset { 0, 1 } which
is a recurrent subset - tha t is there is a fini te probabili ty of return. Moreover, their two rows are identical
in this long-time limi t . Indeed this is the equilibrium distribu tion for this subset .

T his confirms the original asser t ion tha t the M arkov chain is par ti t ioned into disjoint sub-classes (subsets)
of ei ther recurrent or transient sta tes. T he numbers in the third row then represent the probabili t ies of
ending up in sta tes 0,1, or 3 having star ted from the transient sta te 2. T hese numbers are called hitting

probabilities and will be discussed la ter.

L et us conclude wi th yet another example tha t displays the par ti t ioning of subsets.

EXAMPLE
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•0
    

•1  
  

•4

    '''''''''  
•2

  

  

•3

  

  

{ 0,1 } recurrent - both 0,1 aperiodic
{ 2,3 } recurrent - both 2,3 aperiodic
{ 4 } is transient (fini te probabili ty of never returning)


