
Chapter 12

Markov processes

It is no exaggeration to say that Markov processes are the most (mathematically) important category of
stochastic processes. They are also the easiest to understand for the following reason. A Markov process
is one for which the future state of a system depends only on its present state and not on its past.

Consider a discrete variable X that changes randomly in time (at discrete intervals). The sequence of
values of X at times t = 0, 1, 2, 3 . . . . are denoted by X0, X1, X2, X3 . . . . Such a sequence is often called
a time series because the ordering is defined by the time at which the event occurs. An example of such
a sequence could be a series of coin tosses where X = 1 is HEADS and X = 0 is used to denote the
outcome TAILS. Then a typical sequence might look like:

00101110101110001 · · · .

In this example, each outcome in the sequence is independent of all other outcomes. Each toss of the
coin is not affected by the past outcomes or correlated in any way with future outcomes.

A formal definition of a Markov chain is that, given a sequence of random variables:

X0, X1, · · · , Xn−1, Xn (12.1)

then

P (Xn = xn|X0 = x0, X1 = x1, . . . , Xn−1 = xn−1) = P (Xn = xn|Xn−1 = xn−1) . (12.2)

So if Xn−1 represents the present, and Xn is the (uncertain) future , then we can consider the given
sequence as the history or past of the chain. We say that a Markov chain has no memory of its past, and
therefor no dependence on what happened in the past.

The simple random walk is an example of such a Markov chain. Suppose the walk starts at the point
x = a at t = 0, and then takes n steps. Let us denote the sequence of steps by:

X1, X2, · · · , Xn . (12.3)

where each step can have the value, Xi ∈ {−1, 0, +1}, corresponding to a step to the left, no step, or a
step to the right. Then, given the walker starts at S0 = a, the position of the walker after i steps will be

Si = a + X1 + X2 + · · · + Xi . (12.4)

Suppose the walker has taken n steps, then the position on the next step (which may be random) only
depends on where the walker is now. The future position has no dependence on how (the sequence of
left/right steps) the walker arrived at the present position. In mathematical terms:

P (Sn+1 = sn+1|S0 = a, S1 = s1, . . . , Sn = sn) = P (Sn+1 = sn+1|Sn = sn) . (12.5)
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12.1 Transition matrix

A Markov process is said to be homogeneous (or stationary) if the probability of a transition does not
depend on the time at which it occurs. In mathematical terms:

P (Xm = xk|Xm−1 = xj) = P (Xm+n = xk|Xm+n−1 = xj) for all n ≥ 0 . (12.6)

In this formula n represents the time-gap between an earlier and later time in the sequence. For the
present, we consider only homogeneous Markov processes.

In a Markov process we call the value of the random variable (X) the state of the system. For a discrete
system, with a finite number of states, the states could then be labelled: x1, x2, . . . , xn.

So any step (transition) between two states is random, but has an associated probability. The conditional
probability relating the one-step (present-to-future) process is called the transition matrix for the process.
So at any time tm−1, the probability of the system hopping from a given state Xm = xj to another state
xk is:

pjk = P (Xm = xk|Xm−1 = xj) (12.7)

where the label j (row index) denotes the present state of the system. and the label k (column index)
denotes the future (uncertain) state of the system. For N possible states, this will be an N × N matrix.

Figure 12.1: A transition graph representation of a Markov chain. The dark circles are the nodes of the
graph (states of the system): in this case N = 7. The arrowed lines, called edges indicate the transitions,
that is, the possible one-step jumps. Any node i which connects towards node j (directed arrow) means
that a possible one-step jump i → j can occur. The graph can be represented by an equivalent transition
matrix P, in which the arrows are equivalent to non-zero matrix elements in row i and column j. So each
edge in the diagram will have an associated transition probability.

Figure 12.2: An example of a four-state Markov chain.

Now, at this point, we state that the N -states form a partition of the event space. That is, it is impossible
for the system to be in two states simultaneously. The state of the system at any time is random, but it
is unique.

This means that although the future state is uncertain, one of the states will certainly be occupied. That
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Figure 12.3: The probability tree of the Markov chain shown in figure (12.2). The vertical axis is the
state label/value. The horizontal axis is time, with the arrows indicating the possible transitions that
arise from the process (12.2). This diagram illustrates the homogeneity of the Markov process, time
invariance. As we move along the diagram to the right or left, increase or decrease time, the picture
remains the same. This is what is meant by time homogeneity, expressed by the relation (12.6).

is, the probabilities must add to 1. In terms of the transition matrix this translates to:

N
∑

k=1

pjk = 1 for all j . (12.8)

That is, summing along every row of the transition matrix gives a total of 1. In the theory of linear
algebra, a matrix with this property is also called a stochastic matrix.

EXAMPLE

Consider a coin which can be either HEADS or TAILS. There are two possible states which we will denote
by X = 1 (HEADS) and X = 0 (TAILS).

For the coin, the probability of HEADS is 0 ≤ p ≤ 1 on each and every toss, and the probability of TAILS

is, q = 1 − p. Then each toss of the coin allows the state to change according to:

P (Xn = 0|Xn−1 = 0) = p00 = q , P (Xn = 0|Xn−1 = 1) = p10 = q . (12.9)

if the toss is TAILS.

Similarly, we have:

P (Xn = 1|Xn−1 = 1) = p11 = p , P (Xn = 1|Xn−1 = 0) = p01 = p . (12.10)

if HEADS turns up.

These transition probabilities (the changes between two successive tosses) have no dependence upon when
they occur in the sequence of the chain. That is they have no dependence on n. So this is a homogeneous
Markov chain for which the transition matrix can be written as:

P =

(

p00 p01

p10 p11

)

=

(

q p
q p

)

(12.11)

where the first row corresponds to starting in state 0, and the second row starting in state 1.

EXAMPLE

Consider a Markov chain, with states X = 0 and X = 1 defined by the transition matrix:

P =

(

1 − a a
b 1 − b

)

(12.12)

with, 0 ≤ a, b ≤ 1. The transition matrix can be represented by a transition graph or transition diagram.
The states are represented by the nodes (or states) and the transitions are indicated by directed arrowed
lines called edges. An example of a transition diagram for a 7-state system is shown in figure 12.1. For
the transition matrix (12.12) the corresponding graph is shown in figure (12.4). Note that the Markov
chain is fully described by either its transition matrix or its transition graph.

EXAMPLE

QUESTION
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Figure 12.4: The transition graph corresponding to matrix (12.12). The dark circles are the nodes of the
graph (states of the system). The directed and labelled lines show the transitions and the corresponding
probabilities, respectively.

A simple symmetric random walk takes place between absorbing barriers at x = 0 and x = 3. Write
down the transition matrix for this process, and draw the corresponding transition diagram.

SOLUTION

The position of the walker is the state of the system. Thus there are states corresponding to X = 0, 1, 2, 3,
and thus the transition matrix will be 4× 4.

For the absorbing barriers at x = 0 and x = 3, we know that, once the state reaches these points it never
leaves. Thus the transition matrix for the first row will be:

p00 = 1 , p01 = p02 = p03 = 0 .

The system is certain to be at x = 0 on the next step.

Similarly, if the system starts at x = 3 it is certain to remain there. Thus, for the last row of the matrix
we have:

p33 = 1 , p30 = p31 = p32 = 0 .

Starting at x = 1 (that is the second row of the matrix) we can either go left to x = 0 with probability 1
2 ,

or right to x = 2 with probability 1
2 . it is impossible to get to x = 3 in one step, however, Thus p13 = 0.

Also the walker must step away, thus the probability of remaining at x = 1 on the next step is also zero.

Continuing in this manner we arrive at the answer:

P =









1 0 0 0
1
2 0 1

2 0
0 1

2 0 1
2

0 0 0 1









. (12.13)

Note that each row sums to 1, as it should.
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Figure 12.5: The transition graph corresponding to the simple random walk. The corresponding transition
matrix is given by (12.13). The dark circles are the nodes of the graph (states of the system). The directed
and labelled lines show the transition directions and the corresponding probabilities, respectively.

12.2 The n-step transition probability

Consider the probability of a two-step transition from state i to state j. That is: X0 = i → X2 = j (see
figure 12.6). First we note that the states of the system form a partition of the event space. This can be
calculated using the partition rule in the form:

P (X2 = j|X0 = i) =
∑

k

P (X2 = j|X0 = i, X1 = k)P (X1 = k|X0 = i) . (12.14)
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That is, we have conditioned on the first step i → k. Each state of the system is disjoint, and the sets of
states in complete (covers all possibilities).

Given that the process is Markovian then we can simplify some of the terms. Specifically:

P (X2 = j|X0 = i, X1 = k) = P (X2 = j|X1 = k) . (12.15)

That is, the past (X0) has no bearing on the transition probability for the next step. Furthermore, since
the process is homogeneous, we have:

P (X2 = j|X1 = k) = P (X1 = j|X0 = k) = pkj . (12.16)

Similarly:
P (X1 = k|X0 = i) = pik , (12.17)

so (12.14) simplifies to:

P (X2 = j|X0 = i) =
∑

k

pkjpik =
∑

k

pikpkj . (12.18)

Then, we can easily show that the two-step matrix is also stochastic, as it should be. That is, starting in
state i, after two-steps one should end up in one of the states j. The total of the transition probabilities
should always sum to 1. So summing over j, the final states, for the two-step matrix gives us:

∑

j

P (X2 = j|X0 = i) =
∑

j,k

pkjpik =
∑

k

pik = 1 . (12.19)

Recall that, given a matrix A and a matrix B, then the product AB is defined as:

(AB)ij ≡
n

∑

k=1

AikBkj

which exists if the number of columns of A equals the number of rows of B. Examination of (12.18),
shows that it can be written as such a matrix product:

P (X2 = j|X0 = i) = (P.P)ij =
(

P
2
)

ij
, (12.20)

where the superscript indicates the square of the matrix P. That is, a two-step transition matrix is the
product of two single-step matrices.

Figure 12.6: The one-step transition i → j is indicated by the dashed line. The two-step transitions
i → k → j are shown by dotted lines.

Then, in general, any n-step process is the result of n one-step processes:

P (Xn = j|X0 = i) = (Pn)ij . (12.21)
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This is the most important result in this chapter, and is now proved.

This can be proved by induction as follows. Clearly, for n = 1:

P (X1 = j|X0 = i) = (Pn)ij , (12.22)

by definition. Now we show that, assuming (12.21) is valid for n this implies that the relation is also
valid for n + 1, and thus n = 2 and so on.

Consider, P (Xn+1 = j|X0 = i). By conditioning on the first step we have that:

P (Xn+1 = j|X0 = i) =
∑

k

P (Xn+1 = j|X0 = i, X1 = k)P (X1 = k|X0 = i) , (12.23)

Now using the Markovianity property (12.2):

P (Xn+1 = j|X0 = i, X1 = k) = P (Xn+1 = j|X1 = k) , (12.24)

next using the homogeneity property (12.6), we have that

P (Xn+1 = j|X1 = k) = P (Xn = j|X0 = k) , (12.25)

Now according to our assertion/assumption (12.21) we can write this as:

P (Xn = j|X0 = k) = (Pn)kj , (12.26)

Then, it follows that (12.23) can be written as:

P (Xn+1 = j|X0 = i) =
∑

k

(Pn)kj (P)ik , (12.27)

Then clearly, according to the rules of matrix multiplication:

P (Xn+1 = j|X0 = i) =
(

P
n+1

)

ij
, (12.28)

which proves the assertion by induction.

12.3 Chapman-Kolmogorov relation

Since, for matrix products, we have the following rule of indices:

P
m+n = P

m
P

n = P
n
P

m (12.29)

this gives the Chapman-Kolmogorov relation

(

P
m+n

)

ij
=

∑

k

(Pm)ik (Pn)kj . (12.30)

or in equivalent form:

P (Xm+n = j|X0 = i) =
∑

k

P (Xm = k|X0 = i)P (Xn = j|X0 = k) . (12.31)

That is a transition probability over m+n steps can be divided into two stages: m steps (to an intermediate
point,k) followed by n steps to the final point j. Then we sum over all possible intermediate points
(partitions) that are possible.
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12.4 Examples

• Consider a Markov chain defined between the states X = 1, 2, 3, 4 defined by the transition matrix:

P =









0.9 0.0 0.1 0.0
0.5 0.2 0.0 0.3
0.2 0.2 0.2 0.4
0.4 0.4 0.2 0.0









. (12.32)

Then, suppose we wish to calculate the two-step transition probabilities, for example; P (X2 =
3|X0 = 4). We can do this by calculating the matrix P2 and looking at the element in row 4 (initial
state) and column 3 (final state).

P
2 =









0.8300 0.0200 0.1100 0.0400
0.6700 0.1600 0.1100 0.0600
0.4800 0.2400 0.1400 0.1400
0.6000 0.1200 0.0800 0.2000









. (12.33)

So, from this matrix we can read off the transition probabilities, for example:

P (X2 = 3|X0 = 4) = 0.0800 , P (X2 = 2|X0 = 2) = 0.1600 . (12.34)

Notice that P2 is also stochastic as it should be, and as proven above (12.19). That is summing
along the rows gives 1 in each case.

Suppose we are interested in the 8-step processes 1, then we calculate P8, and so on:

P
8 =









0.7676 0.0588 0.1115 0.0622
0.7668 0.0593 0.1115 0.0624
0.7655 0.0602 0.1113 0.0630
0.7663 0.0596 0.1114 0.0628









. (12.35)

An interesting feature of this last result is that the rows of this matrix seem to be almost identical.
This is a special feature of this system, indicating that a unique equilibrium state exists We discuss
this aspect in much more detail in the next few chapters.

• Let’s return to the simple random walk represented by figure (12.5). In this case the states are
X = 0, 1, 2, 3 and the transition matrix is (12.13):

P =









1 0 0 0
1
2 0 1

2 0
0 1

2 0 1
2

0 0 0 1









. (12.36)

Suppose the present state of the system is X = 2, and we are interested in what might happen after
two steps. In the context of the gambler’s ruin analogy, we start with k = 2 and play two games of
coin tossing.

According to the Chapman-Kolmogorov formula we can use the matrix P2 to answer this question.

P
2 =









1.00 0 0 0
0.50 0.25 0 0.25
0.25 0 0.25 0.50
0 0 0 1.00









. (12.37)

Reading along row 1- we see that, if we start in X0 = 0, we are certain to stay there. This makes
sense since there are no transition leaving X = 0 (see figure ??). Similarly, if one starts in X0 = 3,
one never leaves that state.

1Computations carried out with GNU Octave. GNU Octave is a high-level language, primarily intended for numer-
ical computations. It is free software under the terms of the GNU General Public License (GPL) and available under
Linux/Windows/MacOSX.
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Reading along row 3 (corresponding to starting in X = 2) we see that, from the first column,
P (X2 = 0|X0 = 2) = 0.25, and so forth.

Let’s consider the long-run, namely, for any starting point, X0 = i, where would one end up:

P (X∞ = j|X0 = i) = P
∞)ij .(12.38)

We find that after 6 steps

P
6 =









1.0000 0 0 0
0.6562 0.0156 0 0.3281
0.3281 0 0.0156 0.6562

0 0 0 1.0000









. (12.39)

As before (rows 1 and 4) starting in one of the ends, one is trapped there. The middle two rows
(rows 2 and 3) show how the random process evolves of walkers starting at X0 = 1 and X0 = 2.

Now consider the pattern that emerges in the long-run, say after 100 steps.

P
100 =









1.0000 0 0 0
0.6667 0 0 0.3333
0.3333 0 0 0.6667

0 0 0 1.0000









. (12.40)

Row 2 tells us the eventual fate of a simple random walk that starts from X0 = 1, and so on.

Since this problem has already been solved in earlier chapters, we can check that the result is
consistent with the formula previously obtained. The problem corresponds to gambler’s ruin with
p = q = 0.5 In that case, we found, starting at X0 = k the probability of eventually ending up at
X∞ = 0, given N = 3 was

P (X∞ = 0|X0 = k) = pk = 1 −
k

N
= 1 −

k

3
, (12.41)

The numbers given by this formula agree with those for our transition matrix (12.40) reading down
the first column corresponding to, k = 0, 1, 2 and 3, respectively.

We also note that, in the long run, we end up in either X = 0 or X = 3. That is, eventually,
the walker/gambler is absorbed at one end or the other. This is a consequence of the law of large
numbers, but we arrive at the same conclusion based on numerical results by noting the two columns
of zeros running down the centre of the matrix (12.40), which tells us there is zero probability of
ending up somewhere in the middle.


