
Chapter 11

Convergence theorems

We’ve already discussed the difficulty in defining the probability measure in terms of an experimental
frequency measurement. The heart of the problem lies in the definition of the limit, and this was set
aside in favour of the axiomatic basis.

Even, within the axiomatic premise, we have several important convergence theorems relating to a large
number of repeated trials (sampling). The two fundamental theorems are:

• the law of large numbers

• the central limit theorem

These convergence theorems are the foundations of statistics. We can consider the subject of Statistics
as experimental probability. That is the collection and analysis of data (measurements) to determine
properties of the underlying theory (probability). These relations underpin that subject in that they
support that the measurement process (under certain conditions) will give progressively better estimates.

11.1 Sampling

To simplify the discussion, suppose we have a discrete random variable, X . This random variable has a
known (theoretical) mean and standard deviation defined by:

µ ≡ E (X) , σ =
√

var (X) . (11.0)

and calculated from the (known) probability mass function. We will refer to these theoretical quantities
as the true mean and true standard deviation.

Now consider an experiment in which this random variable is sampled n times under identical condi-
tions. The aim of this experimental sampling might be to infer or deduce properties of this theoretical
distribution.

Suppose the experiment involves n samples of the random variable. For example, n rolls of a die, or
n individuals chosen from a population. Let us denote the (random) value of X obtained from the ith
sample as, Xi. Then one can gather these outcomes together in the following way. Take the sample sum
of these variables:

Sn ≡ X1 + X2 + · · · + Xi + · · · + Xn . (11.0)

We try to ensure that the individual samples Xi are independent. If the sample is done correctly (and
we won’t go into what that means here), these values will be independent and identically distributed.

If this is the case, then they will have the same common mean (µ) and variance (σ2). Then it follows
that:

E (Sn) = E (X1 + X2 + · · · + Xi + · · · + Xn) = nE (Xi) = nµ , (11.0)

and that:
var (Sn) = var (X1 + X2 + · · · + Xi + · · · + Xn) = n.var (Xi) = nσ2 . (11.0)
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11.2 The weak law of large numbers

Let us simply state the law as a theorem and then present a proof.
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for any ε > 0.

Proof:

Firstly, we know that the theoretical expected value of the sample mean is the true mean, µ, namely:
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and that:
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. (11.0)

According to the Chebyshev inequality (10.40) we have:
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Then, for any finite ε, taking the limit of an infinitely large sample,n → ∞, we have:
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The meaning of the theorem is that if we take a sufficiently large sample (n → ∞), then the sample
average (experiment) converges with certainty to the true mean (theory). That is, the probability of the
sample average Sn/n (that is the experiment) deviating from µ (the theory) by a given amount ε (no
matter how small) is zero, in the limit of an infinitely large sample.

This elucidates the importance of the theorem and moreover quantifies the sampling error. So the larger
the sample size, the more accurate the sample mean approximates the true mean. Such a conclusion
validates any experimental measurements or observations of random processes. Of course, there is a
practical problem to enforcing the power of the theorem, the ability to do such experiments is severely
limited by intrinsic sampling errors (bias) and measurement errors. These are broadly lumped together
as statistical errors.

There is a more impressive version of this law: the strong law of large numbers, which has a subtle but
important difference:
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for any ε > 0. The reason it is called the strong law is that it imposes convergence in a much stronger
sense. The weak law refers to the limit of the probabilities, while the strong law describes the probability
of the limit. The proof of the strong law is more complicated - that’s the price you pay for having a
better law. Studying the details of the proof are worth the effort. but will not be covered here. Instead
we progress to the second topic, the central limit theorem.

11.3 Central-limit theorem

As before, the theorem will be stated and then proven.

Let {X1, X2, . . .Xn} be a set of independent, identically-distributed variables, with E (X) = µ and
var (X) = σ2. Then, with Sn ≡ X1 + X2 + · · · + Xn, we have:
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where Φ(z) is the standard normal probability distribution function:

Φ(z) ≡
1√
2π

∫ z

−∞
e−

1
2x2

dx . (11.0)

Proof

What we aim to show is that the sample variables have normal distributions as the sample size increase,
n → ∞. We will do this indirectly, by showing that the moment-generating function of a sample variable
tends to the moment-generating function of a normal distribution. Since there is a unique correspon-
dence between the distribution and its moment-generating functions, this convergence implies that the
underlying distributions also converge.

Firstly, recall that the standard normal probability density is given by:

φ(x) =
1√
2π

e−
1
2x2

. (11.0)

with E (X) = 0 and var (X) = 1. Then the corresponding moment-generating function is:

MX(t) = E
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etX
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This integral can be evaluated by completing the square:

tx − 1
2x2 = 1

2 t2 − 1
2 (x − t)2 ,

and then changing variable x → x − t, it follows that the moment-generating function for the standard
normal distribution is:

MX(t) = E
(

etX
)

= e+
1
2 t2 . (11.0)

Now turning our attention to the experiment, given that:

Sn ≡ X1 + X2 + · · · + Xn ,

set:

Zn ≡
(Sn/n) − µ

σ/
√

n
. (11.0)

By this transformation, the sample sum Sn is now converted to Zn, a variable with mean and variance:

E (Zn) = 0 , var (Zn) = 1 . (11.0)

The aim is to show that, in the limit n → ∞, not only does this variable have the same mean and variance
as the standard normal distribution, but it is identical to the standard normal distribution.

We have previously mentioned that all we require for this equality is that their moment-generating
functions are the same. So let us consider the moment-generating function of Zn. By definition we have:

MZn
(t) = E

(

etX
)

= E

(

exp

(

t

σ
√

n

n
∑

i=1

(Xi − µ)

))

(11.1)
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And since {X1, . . . , Xn} are independent variables we can write:
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Given that the Xi are identically distributed, we have:
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So the moment generating function depends on t. One can make a Maclaurin expansion for the exponential
function in t as follows:
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Now evaluating the expections of each term in turn, and noting that E (X) = µ by definition, this gives
rise to:
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this finally gives:
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Note, the symbol O, in the last term means ‘of the order’. That is this term has some finite (unspecified)
coefficient but is proportional to t3n−3/2. At this juncture we take the limit n → ∞, which leads to the
result:
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This culminates with the following expression for the moment-generating function.

lim
n→∞
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That is the variable Zn has the same moment generating function as the standard normal distribution:
equation 11.3. Consequently the probability distributions are identical, in every aspect, in this limit.

end of proof.

In summary, the distribution of the sample of any discrete random variable, tends towards a normal
distribution.

Consider how this works in practice. For any discrete random variable X with mean, µ, and (finite)
standard deviation, σ, the sample (sum) variable:

Sn ≡ X1 + · · · + Xn , (11.-2)

obeys the following relation, for large n,
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Equivalently, rearranging this we can find the probability distribution of Sn:

FSn
(s) = P (Sn ≤ s) = Φ

(

s/n − µ

σ/
√

n

)

. (11.-2)

While Sn is, of course a discrete variable, according to the central-limit theorem, for a large sample it is
can be approximated by a continuous normal distribution.

Consequently the probability density will have the form:
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that is:
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This is a continuous variable, and to convert this to the equivalent probability mass for the discrete
variable Sn, we use the fact that, by definition

P (s ≤ Sn ≤ s + ∆s) = fSn
(s)∆s , (11.-2)

and when the interval is , ∆s = 1, as it would for a counting variable, for example the number of HEADS

in n tosses of a coin, we would get:
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, Sn = 0, 1, 2, . . . , n (11.-2)

for the probability mass function for the discrete variable Sn

EXAMPLE

A certain flight carries a random number of passengers, X , such that the average and variance are given
by:

E (X) = 50 , var (X) = 100 . (11.-2)

In a sample of 20 flights:

(a) What is the probability that the total number of passengers is less than 950 ?

(b) Calculate the probability that the passenger total is exactly 1010.

SOLUTION

Although n = 20 is not a very large number, let’s use the central-limit theorem anyway. Then the total
number of passngers (over all 20 flights) we will call:

Sn = X1 + X2 + · · · + Xn . (11.-2)

Then we have the correspondence:

n = 20 µ = 50 σ =
√

100 = 10 . (11.-2)

Then to answer (a) we are after

P (Sn ≤ S) with S = 950 . (11.-2)

This is equal to, making the same changes to both sides of the inequality:
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And, according to the central-limit theorem:

P (Sn ≤ S) ≈ P
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= Φ(−1.118) (11.-2)

Now, due to the reflection symmetry of the standard normal distribution (an even function) we have the
following identities

Φ(−z) = 1 − Φ(z) (11.-2)

and for this reason, the published tables only need to provide values for z ≥ 0. From the tables:

P (Sn ≤ 950) = 1 − Φ(1.118) ≈ 0.132 . (11.-2)

This provides the answer to part (a).

To answer (b) we reframe the question as, what is the value of: P (Sn ≤ 1010.5) − P (Sn ≤ 1009.5) ?
Then, using the same arguments, we arrive at the answers:

P (Sn ≤ 1010.5) = Φ(0.2348) = 0.5928 , P (Sn ≤ 1010.5) = Φ(0.2124) = 0.5841 . (11.-2)

Thus
P (Sn = 1010) ≈ 0.5928 − 0.5841 = 0.0087 . (11.-2)
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11.4 Confidence limits and standard error

Suppose you wish to conduct a survey, for example to determine the popularity of the government or
the fraction of the student population that smokes. In sampling a finite number n of people there will
inevitably be uncertainty (randomness) in the outcome. Nonetheless it is possible (using the central-limit
theorem) to estimate the error in your estimates based on the size of the sampling. One can define
confidence limits as the probability of the correctness of your answer (within a certain accuracy) based
on the size of the sample.

Let us set aside, for the present, the formidable challenge of choosing who to sample and how to sample
them, and focus on the size of sample required to form an opinion. That is a different kind (and more
challenging problem) of additional statistical error. Suppose, you wish to estimate some parameter, let’s
call it z, with a certain accuracy (error), let’s call it ε, within a degree of certainty. Let’s call the certainty,
or more strictly the probability, p. Statisticians tend to get a bit obsessed with statistical tests and p-
values. How many people n, would you need to sample to get a desired accuracy ? Clearly, this will
depend in some way on the size of error you are willing to tolerate and the degree of certainty you wish
to impose.

A concrete example will illustrate the role of the central-limit theorem in providing such an estimate. We
consider a yes/no question and let us say that you are conducting a survey on, let’s say the fraction of
people who smoke, or the percentage of people who went to the movies in the last month, or the fraction
of the population that support the government. Suppose that the true value (that is if we sampled the
entire population) of people who say they like classical music is 0 ≤ z ≤ 1. We seek a value for z which
is accurate to ε = ±0.05 (this is not quite the same as saying a 5% accuracy), and we want (at least)
p = 90% for the confidence limit.

One must be careful about the use of the term confidence in this context. This does not mean we are
90% confident that the estimate is correct. It simply means that ‘nine times out of ten’ we expect this
result. The term confidence limit is an unfortunate choice of words in this context.

So, the survey approaches n individuals and, of these, s people say they like classical music. In mathe-
matical terms we wish to know the value n such that the sample fraction, s/n, that said ‘yes’ (the like
classical music) is such that the probability exceeds a certain value, pc (the confidence limit):
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If the answer to the question is simply yes/no (Bernoulli variable) then the theoretical mean would be z
and the standard deviation for any individual would be: σ =

√

z(1 − z). Thus we seek n such that:
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For a large sample, we can use the central-limit theorem (normal distribution for the sample average), so
that:
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That is one would require a sample size given by:
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. (11.-2)

For the example discussed above, using tables for the standard normal distribution we find Φ−1(0.95) ≈
1.645, and since σ2 ≤ 1

4 we have:
n ≥ 271 .

So, we should sample at least n = 271 people, to have a 90% confidence limit, that our experimental
answer to the value of z is within the error 0.05. Thus the sample size, n is a function of the accuracy
desired (ε) as well as the confidence required (pc), and is proportional to the variance (σ2) of the variable.

By the same token, for a fixed confidence value (pc), the error (ε) in choosing a sample of size n would
be:

|ε| ≥
σ√
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. (11.-2)
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This dependence is known to every statistician, and indeed the expression:

σ√
n

(11.-2)

is so widely encountered, it is called the standard error. However, one must be careful not to quote this
expression as ‘the error’. That is, it would be wrong to state that the estimate for z is limited within
these bounds. The standard error only has a meaning in terms of the normal distribution.

Commonly, one seeks confidence at the 95% level, in which case one can be more precise: Φ−1 (0.975) ≈
1.96 and thus:

|ε| ≥
σ√
n

1.96 . (11.-2)

That is the right-hand side provides a lower bound on the error.

Therefore, while our sampling error diminishes with certainty as the sample size increases, the rate of
decrease in error is frustrating slow, namely ∼ n− 1

2 . So making the sample 10 times larger only leads to
a factor 3 in reduction in sample error.

11.5 Convergence to the normal distribution

We have used the moment-generating function to prove the central-limit theorem. The power of this
approach is that it works for any distribution function.

We can show explicitly the convergence to a normal distribution directly from the probability mass.
Consider a series of trials (such as coin tossing) where Wi ∈ {0, 1} corresponds to the ith toss of the coin
producing a TAILS or HEADS, respectively. Our sample is then a (large) number of coin tosses N , and
let us take the sample random variable as the total number of HEADS.

On any given toss the probability of heads is p. Thus

X ≡ W1 + W2 + · · · + Wn . (11.-2)

Then clearly, the Wi are independent, so that:

E (X) = np , var (X) = npq . (11.-2)

as is well known for a binomial distribution.

Then the probability mass for X (the sample) is just the binomial distribution

fX(x) =
n!

x!(n − x)!
pxqn−x .

We note one property of this function of x. For np , 1, the function reaches a single maximum, for a
particular value of x and then falls away rapidly as x → 0. or x → ∞. This is illustrated by the bar
chart (figure ??).

The correspondence with the normal distribution has been known for a very long time, at least as far
back as de Moivre in 1733. Let us go through the argument here.

First of all, we need to consider a very large sample size n , 1. Thus means evaluating large factorials
and Stirling’s formula (see appendix for derivation) gives us a very good approximation for this, namely
that:

n! ≈
√

2πn nne−n . (11.-2)

That is
lnn! ≈ 1

2 ln(2π) + (n + 1
2 ) ln n − n . (11.-2)

Now, let us define: g(x) = ln fX(x) so that, for large n, x and n − x we have:

g(x) ≈
[

1
2 ln(2π) + (n + 1

2 ) lnn − n
]

−
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1
2 ln(2π) + (x + 1

2 ) lnx − x
]

−
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1
2 ln(2π) + (n − x + 1

2 ) ln(n − x) − (n − x)
]

+x ln p + (n − x) ln q . (11.-3)

(11.-2)



76 CHAPTER 11. CONVERGENCE THEOREMS

0 2 4 6 8 10 12 14 16 18 200

0.1

0.2

0.3

x
f X(x

)
 

 

 n=8
 n=20
 n=40

Figure 11.1: The binomial distribution for p = 0.4, n = 8, 20, 40. Note that the distribution has a single
maximum, near x = np, and that as n increases, the shape begins to resemble the ’bell-shaped’ normal
distribution.

Now, as indicated in figure 11.1, f(x) and hence g(x), has a maximum value at some intermediate value
of x.

We can find the location of the maximum by finding the solution of:

g′(x) = 0 (11.-2)

That is:

g′(x) = − lnx − 1 −
1
2

x
+ ln(n − x) + 1 +

1
2

(n − x)
+ ln p − ln q . (11.-2)

Now for large xn, and n−x the two terms in 1/x and 1/(n−x) can be neglected to a fair approximation.
So the value of x where the maximum occurs is approximately the solution of:

ln

(

(n − x0)p

x0q

)

= 0 (11.-2)

That is:
x0 = np . (11.-2)

Recall that this value is the mean of the binomial distribution. We now see that this becomes the mode
of the sample variable, X .

Now the second derivative at this point, g′′(x0), is given by:

g′′(x0) ≈ −
1

x0
−

1

n − x0
= −

1

npq
. (11.-2)

Clearly g′′(x0) < 0, which confirms that the stationary point x0 is a maximum.

Then consider the Taylor series of g(x) in the neighbourhood of the maximum:

g(x) ≈ g(x0) + (x − x0)g
′(x0) + 1

2 (x − x0)
2g′′(x0) (11.-2)

Then, since g′(x0) = 0 and,

g(x0) = − 1
2 ln(2π) + (n + 1

2 ) lnn + (np + 1
2 ) lnnp − (nq + 1

2 ) lnnq + np ln p + nq ln q . (11.-2)

That is, after simplification:
g(x0) = − 1

2 ln(2π) − 1
2 lnn − 1

2 ln pq (11.-2)

Then:

g(x) ≈ − 1
2 ln(2π) − 1

2 lnn − 1
2 ln pq −

1

2npq
(x − np)2 . (11.-2)
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It follows that, in the limit of a large sample, we have the approximation:

fX(x) ≈
1√

2π
√

npq
exp

(

−
(x − np)2

2npq

)

. (11.-2)

So we find that X has a normal distribution with mean given by µ = np and variance npq.

We see that the result concurs with the central-limit theorem, since for the geometric variable

µ = p , σ =
√

pq (11.-2)

Then according to the central-limit theorem, in the form (11.3)

P (Sn = s) ≈
1√

2πnpq
e−

(s−np)2

2npq . (11.-2)

which agrees with (11.5).


