
Chapter 10

Continuous Random variables

We will skip over the details of the distinction between discrete and continuous variables, and the con-
nection between them. The distinction is rather artificial since the variables continuous/discrete can be
defined in terms of Borel sets and the probability as a Lebesgue measure on these sets. This is covered
more rigorously in measure theory. Instead we will rederive everything!

10.1 Probability density

Suppose X is a random variable, within the domain a ≤ x ≤ b. Then we define the probability density
function fX(x) as follows:

P (x ≤ X ≤ x + dx) = fX(x)dx (10.1)

The (cumulative) probability distribution function is defined as the integral:

FX(x) = P (a ≤ X ≤ x) =

∫ x

a
fX(x′)dx′ (10.2)

Then, in general:
P (c ≤ X ≤ d) = FX(d) − FX(c) . (10.3)

Since the total probability should add up to 1, we have:

P (a ≤ X ≤ b) =

∫ b

a
fX(x′)dx′ = 1 . (10.4)

The moments of the distribution are defined as in the discrete case (replace
∑

i →
∫ b

a dx).

E (X) = µ =

∫ b

a
xfX(x)dx . (10.5)

Then it follows that:

E
(

X2
)

=

∫ b

a
x2fX(x)dx , (10.6)

and one obtains:
var(X) ≡ E

(

X2
)

− (E (X))2 . (10.7)

The moment-generating function can be defined similarly,

MX(t) ≡
∫ +∞

−∞
etxfX(x)dx . (10.8)

And finally, since the distribution is the integral of the density, the derivative of the distribution is the
probability density:

d

dx
FX(x) =

d

dx

∫ x

a
fX(x′)dx′ = fX(x) (10.9)
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10.1.1 Example

Suppose the probability has a uniform density, over the range, a ≤ x ≤ b. That is:

fX(x) =
1

b − a
, a ≤ x ≤ b . (10.10)

and fX(x) = 0 everywhere else. Then, for a ≤ x ≤ b, we have:

FX(x) =

∫ x

a
fX(x)dx =

∫ x

a

1

(b − a)
dx =

(x − a)

(b − a)
. (10.11)

Furthermore, it follows that:

µ = E (X) =

∫ b

a
xfX(x)dx =

∫ b

a
x

1

(b − a)
dx (10.12)

E (X) =
1

(b − a)

[

1
2x2
]b

a
=

1

(b − a)
1
2 (b2 − a2) = 1

2 (b + a) (10.13)

The second moment is given by the expression:

E
(

X2
)

=

∫ b

a
x2 1

(b − a)
dx =

1

(b − a)
1
3 (b3 − a3) = 1

3 (a2 + ab + b2) . (10.14)

Then the variance is given by:

var(X) = 1
3 (a2 + ab + b2) − 1

4 (b + a)2 = 1
12 (b − a)2 . (10.15)

10.1.2 Example

The exponential distribution is defined by the probability density:

fX(x) =

{

λe−λx x ≥ 0
0 x < 0

(10.16)

(a) Calculate

∫ ∞

−∞
fX(x) dx, (b) E (X) and (c) var(X).

10.1.3 Answer

(a)
∫ ∞

−∞
fX(x) dx =

∫ ∞

0
λe−λx dx =

[

−e−λx
]∞

0
= 1 (10.17)

(b)

E (X) =

∫ ∞

0
xfX(x)dx =

∫ ∞

0
xλe−λxdx (10.18)

Integrating by parts:
∫

u
dv

dx
dx = [uv] −

∫

v
du

dx
dx (10.19)

∫ ∞

0
xλe−λxdx =

[

x(−e−λx)
]∞

0
−
∫ ∞

0
(−eλx)1dx = 0 +

∫ ∞

0
e−λxdx =

1

λ
(10.20)

E
(

X2
)

=

∫ ∞

0
x2λe−λxdx (10.21)

This can be calculated by integration by parts twice, however, there is a more efficient alternative -
differentiating twice.

E
(

X2
)

= λ

∫ ∞

0
x2e−λxdx = λ

(

∂

∂λ

)2 ∫ ∞

0
e−λxdx (10.22)
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Then,

E
(

X2
)

= λ

(

∂

∂λ

)2 [ 1

λ

]

=
2

λ2
(10.23)

var(X) = E
(

X2
)

− (E (X))2 =

(

2

λ2

)

−
(

1

X

)2

=
1

λ2
. (10.24)

10.1.4 Example

The normal or Gaussian distribution with parameters, µ, σ is given by the density:

fX(x) =
1√
2πσ

exp

(

−(x − µ)2

2σ2

)

, −∞ < x < +∞ . (10.25)

Then (see homework), we can show that:

E (X) = µ and var(X) = σ2 . (10.26)

This distribution is denoted by the symbol N(µ, σ2). Values of thestandard normal distribution N(0, 1) ⇒
mean = 0, variance = 1, are widely tabulated. The density in this case is given the special notation φ(x):

φ(x) =
1√
2π

e−
1
2x2

. (10.27)

The corresponding probability distribution is defined as follows:

Φ(z) =
1√
2π

∫ z

−∞
e−

1
2x2

dx = P (Z ≤ z) . (10.28)

10.2 The Markov and Chebyshev Inequalities

Consider a continuous random variable X , such that X is non-negative: X ≥ 0. This is not unduly
restrictive since we can always add a value onto the variable to ensure this is the case. So if b is the
(negative) lower limit of X , then the variable, Y = X + b ≥ 0. Then, denoting the mean by E (X) = µ,
the following inequality is true for any a > 0

P (X ≥ a) ≤
µ

a
. (10.29)

This is called the Markov inequality.

10.2.1 Proof

Firstly, consider the left-hand side expression, which is by its definition the integral:

P (X ≥ a) ≡
∫ ∞

a
f(x)dx . (10.30)

Then, we can divide the range of integration for the mean as follows:

µ =

∫ ∞

0
xfX(x)dx =

∫ a

0
xfX(x)dx +

∫ ∞

a
xf(x)dx . (10.31)

This leads to the expression:

µ −
∫ ∞

a
xfX(x)dx =

∫ a

0
xfX(x)dx , (10.32)
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and since the right-hand-side is clearly ≥ 0, since the integrand is always ≥ 0, we have:

µ −
∫ ∞

a
(x − a + a)fX(x) ≥ 0 , (10.33)

in which a has been added and subtracted to a factor in the integrand. Now separating these two terms
gives the result:

µ −
∫ ∞

a
(x − a)fX(x)dx − a

∫ ∞

a
fX(x)dx ≥ 0 . (10.34)

Thus:

µ − aP (X ≥ a) ≥
∫ ∞

a
(x − a)f(x)dx ≥ 0 (10.35)

Finally giving the Markov inequality :

P (X ≥ a) ≤
µ

a
. (10.36)

10.3 Chebyshev Inequality

The Chebyshev inequality takes the form:

P (|X | ≥ a) ≤
E
(

X2
)

a2
. (10.37)

10.3.1 Proof

Note firstly that |X | ≥ a ⇔ X2 ≥ a2, therefore,

P (|X | ≥ a) = P (X2 ≥ a2) (10.38)

Now using the Markov inequality for the variable X , we can write

P (|X | ≥ a) = P (X2 ≥ a2) ≤
E
(

X2
)

a2
. (10.39)

Thus giving the Chebyshev inequality. There is a simple extension of this inequality which follows from
a change of variable. Replacing X by X −µ, and recognising that E

(

(X − µ)2
)

≡ σ2, leads to the result:

P (|X − µ| ≥ a) ≤
σ2

a2
. (10.40)

which is the more common form quoted for the inequality.

10.4 Change of Measure

Recall that the expected value of any function of a continuous random variable can be written as:

E (u(X)) =

∫ +∞

−∞
u(x)fX(x)dx . (10.41)

Since, by definition of the density and distribution we have:

dFX(x) = fX(x)dx .

Then changing the variable of integration to the probability distribution rather than the random variable,
the expected value can be written as:

E (u(X)) =

∫ 1

0
u(x)dFX(x) . (10.42)
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This is an expression of the Radon-Nikodym theorem, which changes variable from x to F . Suppose,
although we are interested in the same random process, we wanted to change the random variable to
another random variable. This new variable, call it y, would have a different measure, which we call G.

In general the variable of integration can be changed so long as there is a one-to-one correspondence
between the new variable and the old variable. That is, a unique inverse function exists. The change of
independent variable will then lead to a change of probability density (in the new variable). Often we
speak of a change of measure when the probability distribution is modified in this way.

Suppose we define a new random variable, Y , such that this inversion is possible:

Y = h(X) , and X = h−1(Y ) . (10.43)

where h(X) is differentiable. Then:

dy = h′(x)dx (10.44)

If the relation between X and Y is monotonic increasing, that is:

h(x + a) > h(x) , a > 0 , (10.45)

then for the probability distributions we have that:

P (X ≤ x) = P (Y ≤ h(x)) . (10.46)

Note, one must be a little careful with notation. The symbol P written here is not a function but a
probability measure. The same statement in terms of the distribution functions can be written:

FX(x) = GY (h(x)) . (10.47)

Now we have a functional relation, it is straightforward to change variable. Using the chain rule for
differentiation, we can define the density for Y :

fX(x) =
d

dx
FX(x) =

d

dx
GY (h(x)) =

dy

dx
×

d

dy
GY (y) = h′(x)gY (y) . (10.48)

That is the change of variable gives a change of density:

gY (y) =
fX(x)

h′(x)
(10.49)

where we need to solve the (implicit) inversion: x = h−1(y). In general, this is not easy to do in analytic
form.

The following example shows a simple case for which this can be achieved. Consider the standard normal
distribution density for the random variable, −∞ < x < +∞:

fX(x) =
1√
2π

exp(− 1
2x2) . (10.50)

If the variable Y is related to X by Y = eX , then the corresponding probability density is given by:

gY (y) = fX(x) ×
dx

dy
=

1√
2π

exp(− 1
2 (ln y)2) ×

1

y
(10.51)

that is the probability density for Y is given by:

gY (y) =
1√

2π y
e−

1
2 (ln y)2 0 < y < +∞ . (10.52)

This is called a log-normal distribution, and the shape of the distribution is shown below (10.1).
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Figure 10.1: Illustration of the log-normal distribution g(y) defined by equation (10.52).

10.5 Partition rule for continuous variables

Suppose we have an event A (a random variable which can be discrete or continuous). Consider a random
process on the continuous variable x for which the outcome corresponds to a unique value, or range of
values, of x. Then each event X = x is an exclusive event, and the entire set of X-values will be a
partition of the sample space. Since this is a continuous variable the summation over this partition is an
integral. Thus the expression of the partition rule, in terms of a continuous variable, is as follows:

P (A) =

∫ +∞

−∞
P (A|X = x)fX(x)dx (10.53)

where the event A is conditioned on the values of the random variable X .

For example, suppose two cats (that we call 1 and 2) have lifetimes that are continuous (independent)
variables, with exponential distributions. Let us denote the lifetime (age of cat when it dies) by T1,2 for
the two cats. Specifically, the probability that cat 1 lives longer than time, t (let’s say this is measured
in years), is given by the formula:

P (T1 > t) = e−λ1t , t ≥ 0 . (10.54)

where 1 > 0 is expressed in units years−1. Then we assume the probability that cat 2 lives longer than
time, t, is:

P (T2 > t) = e−λ2t , t ≥ 0 .

Then the probability distributions are simply:

FT1,2(t) = P (T1,2 ≤ t) = 1 − e−λ1,2t , (10.55)

and the corresponding densities are:

fT1,2(t) =
d

dt

[

1 − e−λ1,2t
]

= λ1,2e
−λ1,2t . (10.55)

for t ≥ 0, and fT1,2(t) = 0 for t < 0.

Recall that in both cases, the expected value of the lifetime is:

E (T1,2) =
1

λ1,2
. (10.55)
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Incidentally, these problems arise in survival analysis in which the parameter λ is called the hazard rate
of the process. In the world of life insurance λ is called the force of mortality. The larger the value of λ,
the shorter the expected lifetime.

The question we pose is, if the two cats are born on the same day, what is the probability that cat 1
outlives cat 2 ?

To answer this question, we use the partition rule conditioning on the lifetime of one of the cats: cat
2, for example. Then defining the event A as T1 > T2, that is the event that cat 1 outlives cat 2, and
conditioning on the lifetime of cat 2, we have the integral:

P (T1 > T2) =

∫ +∞

−∞
P (T1 > T2|T2 = t)fT2(t)dt . (10.55)

In explicit terms this has the form:

P (T1 > T2) =

∫ +∞

0
P (T1 > t)λ2e

−λ2tdt , (10.55)

which in turn leads to:

P (T1 > T2) =

∫ +∞

0
e−λ1tλ2e

−λ2tdt . (10.55)

This integral is straightforward, giving the result:

P (T1 > T2) = λ2

[

e−λ1t−λ2t

−λ1 − λ2

]+∞

0

=
λ2

λ1 + λ2
. (10.55)

Is the formula correct, and does it make sense?

If λ2 + λ1, that is cat 2 has a much longer expected life, then it is highly unlikely that 1 will outlive
2. Comparing this deduction with the formula we obtained, we see that indeed: P (T1 > T2) → 0.
Conversely, if λ2 , λ1, then the short expected life of cat 2, means that cat 1 is almost certain to live
longer: P (T1 > T2) → 1. While if λ1 = λ2 we would expect that there is an equal chance of 1 outliving
2 or vice versa. So the formula makes sense in that it yields the correct result for these special cases.

10.6 Two continuous variables

Suppose we have a pair of continuous random variables, X and Y , then the joint probability density,
fXY (x, y), is defined as:

P (x ≤ X ≤ x + dx, y ≤ Y ≤ y + dy) ≡ fXY (x, y)dxdy . (10.55)

Then the marginal densities are defined, in direct analogy with the discrete variable definitions, as:

fX(x) ≡
∫ +∞

−∞
fXY (x, y)dy and fY (y) ≡

∫ +∞

−∞
fXY (x, y)dx (10.55)

and the probability distribution is related by:

P (X ≤ x, Y ≤ y) = FXY (x, y) ≡
∫ y

−∞

∫ x

−∞
fXY (x, y)dxdy . (10.55)

Following the same train of thought, the conditional probability densities are defined as:

fX|Y (x|y) ≡
fXY (x, y)

fY (y)
and fY |X(y|x) ≡

fXY (x, y)

fX(x)
. (10.55)

with the multiplication rules:

fXY (x, y) = fX|Y (x|y)fY (y) = fY |X(y|x)fX(x) . (10.55)
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10.6.1 Conditional expectation for continuous variables

The conditional expectation theorem for continuous variables takes exactly the same form as that for
discrete variables, that is:

E (Y ) = E (E (Y |X)) . (10.55)

The only point worth mentioning is that expectations involve integration rather than summation.

Proof:

The proof is analogous to that for a discrete variable; with integrations replacing the summations.

E (Y ) =

∫

yfY (y)dy =

∫

y

(
∫

fXY (x, y)dx

)

dy (10.55)

then, using the multiplication rule (10.6) we have:

∫

y

(
∫

fXY (x, y)dx

)

dy =

∫

y

(
∫

fY |X(y|x)fX(x)dx

)

dy . (10.55)

After some rearrangement, namely changing the order of integration (Fubini’s theorem), this gives us:

E (Y ) =

∫
(
∫

yfY |X(y|x)dy

)

fX(x)dx =

∫

(E (Y |X = x)) fX(x)dx = E (E (Y |X)) . (10.55)

10.7 The exponential distribution and memoryless processes

Suppose the departure time of a flight, with scheduled departure time at 10.00 a.m., has an exponential
distribution. That is the true departure time T has a probability distribution:

P (T ≤ t) = e−λt , (10.55)

where t is the time (in minutes) after 10.00 a.m.

The exponential distribution is unique in having no memory. By this we mean:

P (T > t + s|T > s) = P (T > t) . (10.55)

That is, given that the flight has not departed by a time s, the probability that it will not depart after
a further time t does not depend on s. Whether any real process has such a property is open to doubt,
although the process of nuclear fission, for example, is one in which this holds to almost perfection!

For the present, let’s prove this no memory result and then discuss its meaning.

Consider an event that occurs at a random time T . By definition, an exponential distribution for this
event has density:

fT (t) = λe−λt . (10.55)

Then the distribution is:

P (T ≤ t) =

∫ t

0
λe−λtdt = 1 − e−λt . (10.55)

So that:

P (T > t) = 1 − P (T ≤ t) = e−λt . (10.55)

Thus:

P (T > t + s|T > s) =
P (T > t + s and T > s)

P (T > s)
=

P (T > t + s)

P (T > s)
=

e−λ(t+s)

e−λs
= e−λt . (10.55)
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10.8 Survival probabilities and waiting times

Now consider cars passing along a road. Let us suppose that the time interval between each car has an
exponential distribution. Then, according to the argument above, for a pedestrian arriving at the road,
at any (random or predetermined time), s, the time of the first car will have an exponential distribution,
independent of the arrival time (s) of the pedestrian.

Suppose that traffic has this form, with interarrival times given by an exponential distribution with
parameter, λ. We will see later that such a process is called a Poisson process.

A frog takes a time f to cross the road. Let us assume that if a car passes while the frog is on the road
it is certain to be squashed. What is the probability that the frog survives crossing the road ?

Let’s say that the frog starts at t = 0, we have shown above that it doesn’t matter when the frog starts.
Note that the first car that comes along will squash the frog, if it arrives before a time f . We are not
interested in whether a second car arrives soon after, since the frog is already squashed. Therefore the
probability that the frog will cross safely is the same as the probability that the first car arrives after a
time f , that is,

P (T1 > f) = e−λf

is the probability of survival.

We remark that as the intensity of traffic increases, λ → ∞, then e−λf → 0, that is the survival probability
goes to zero. On the other hand as the traffic intensity goes down, λ → 0, then e−λf → 1, and the survival
of the frog is almost certain.

Suppose the time interval between cars travelling on a long straight road has an exponential distribution,
and that these times are independent. A hen wants to cross a road and it will take her a time c to do so.
Furthermore, this chicken is good at judging the speed of cars, and has a long, unobstructed view view
along the straight road in question. So she can estimate when it is safe for her to cross. How long does
it takes the chicken to cross the road, on average ?

The passage of cars is random, and therefore the time is takes to cross is a random variable (Tc) which
explains the ‘on average’ part of the question. So we are looking for the expected time to cross, E (Tc).
Not surprisingly we will use the conditional expectation theorem for the calculation. Let’s condition on
the passage/arrival of the first car.

We have said that the arrival time is exponential The probability density for the passage of the first car
is

fT1(t) = λe−λt , t > 0 . (10.55)

There are only two cases to consider:

• T1 ≥ c In this case the chicken can cross straightaway and so the time to cross is just Tc = c.

• T1 < c

In this case, the chicken must wait for the cat to pass (a time T1) before starting to wait again. So
Tc > T1.

So, conditioning on the first arrival we have, using the conditional expectation theorem in the form
(10.6.1):

E (Tc) = E (E (Tc|T1)) (10.55)

that is

E (Tc) =

∫ ∞

0
E (Tc|T1 = t) fT1(t)dt . (10.55)

Then breaking the integral into two sections gives:

E (Tc) =

∫ c

0
E (Tc|T1 = t) fT1(t)dt +

∫ ∞

c
E (Tc|T1 = t) fT1(t)dt . (10.55)

The density is known, it remains to identify the conditional expectations. For the second terms T1 > c,
the hen crosses immediately.

E (Tc|T1 > c) = c . (10.55)
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While for shorter arrival times, the hen cannot cross until the first car passes, and then must start waiting
a random time, Tc. Then,

E (Tc|T1 = t) = t + E (Tc) , t < c . (10.55)

So

E (Tc) =

∫ c

0
(t + E (Tc)) λe−λtdt +

∫ ∞

c
c λe−λtdt . (10.55)

The integrals can be done by standard means:

∫ c

0
(t + E (Tc)) λe−λtdt = −ce−λc +

1

λ

[

1 − e−λc
]

+ E (Tc))
[

1 − e−λc
]

. (10.55)

∫ ∞

c
c λe−λtdt = ce−λc . (10.55)

Then combining these expressions gives:

E (Tc) = −ce−λc +
1

λ

[

1 − e−λc
]

+ E (Tc))
[

1 − e−λc
]

+ ce−λc . (10.55)

After some simple rearrangement we get:

E (Tc) =
1

λ

[

eλc − 1
]

. (10.55)

Again, we should check that the answer makes sense. Suppose that the traffic is extremely intense,
λ → ∞. Then the expected time to cross will be infinite.

The other extreme, very infrequent traffic, λ → 0, we find (using L’Hôpital’s rule) the limit:

lim
λ→0

E (Tc) = c (10.55)

as we would expect. Since in this case, the first car takes an infinite amount of time to arrive, and the
hen can walk straight across the road without having to wait. So the time it takes to cross is simply, c.


