
Statistical mechanics handout 3

Explain what is
meant by the
term sample
space

Explain what
is meant by
a probability
mass

Explain what
is meant by
normalisation in
the context of
probability

Probability Imagine an experiment performed in the future. The outcome
from this experiment, X, is something that we cannot possibly know in ad-
vance of doing the experiment. We might know at the very least however we
know that X will be a one from amongst a set of mutually exclusive outcomes
- the sample space Ω. We can then define a quantity known as the probability
mass function, pi. The probability mass for outcome i is defined as:

pi = P (X = xi)

Where here P (X = x) is the probability that the probability that the outcome
of our putative experiment, X, is equal to the the particular outcome, xi.
The probability mass function (vector) must be normalised i.e.:

N∑
i=1

pi = 1

where N is the number of outcomes the experiment could have.

Write the defini-
tion of the ex-
pectation of a
function

Expectation The expectation of a function of a random variable g(X) is
defined as:

〈g(X)〉 =

N∑
i=1

g(xi)pi

State the
axioms of infor-
mation theory

Write an ex-
pression for
the information
contained in
a probability
distribution

Information We define a quantity I (the information) contained in a prob-
ability distribution by requiring that this quantity has the following properties
(Khinchine)

• The information depends only on the probability distribution.

• The uniform distribution contains the minimum information.

• If we enhance the sample space with impossible events the information
does not increase.

• Information is additive.

It is possible to show, starting from these axioms, that the information con-
tained in a probability distribution that has N possible outcomes in the sample
space, Ω, that have probabilities given by the vector p, is equal to:

I(p) = k

N∑
i=1

pi ln pi

Summary

Any vector of probabilities must be normalised (
∑
i pi = 1) and will have an information given by

I(p) = k
∑N
i=1 pi ln pi. If each outcome of the experiment has a value bi associated with it we can define

an expectation for this quantity as 〈B〉 =
∑
i bipi
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What function
do you have to
minimise to find
the minimum
in the function
I(p) subject to
the constraint
C(p) = K?

Constrained Optimisation and Lagrange multipliers To find the
optimum value of a function, I(p), subject to some constraints, Cj(p) =
Kj you introduce the set of Lagrange multipliers, {λj} and look for the
unconstrained optimum of the extended function:

F (p, {λj}) = I(p) +
∑
j

λj(Cj(p)−Kj)

In other words you try to find a point where:

∂F (p, {λj})
∂pi

= 0 ∀ i and
∂F (p, {λj})

∂λj
= 0 ∀ j

The basis of this technique is the recognition that, at a constrained optimum
the gradientsa of the constraint functions, {∇Cj(p)}, are either parallel or
antiparallel to the gradient of the target function, ∇I(p).

aa vector that points along the direction in which the function is changing most
rapidly

Explain the
meaning of the
term microstate
and state the
principle of
equal a priori
probability

Explain how
one can cal-
culate the
entropy from
the probability
distribution

Axiom of equal a priori probabilities Any physical system can adopt
one of a number of microstates. For a quantum system these are the various
quantum levels. For a classical system these are the various combinations of
velocity and positions of the atoms in the system. The principle of equal a
priori probabilities assumes that any system in equilibrium is equally likely to
be in any one of the accessible microstates. Consequently, to determine the
probability of being in any microstate one has to minimise the information
contained in the distribution. However, to make the analogy with classical
thermodynamics clearer we will maximise minus the information, which we
will assert is equal to the entropy:

S = −kB
∑
i

pi ln pi

The sum here runs over the set of all microstates.

Explain what is
meant by phase
space

Write an ex-
pression that
can be used
to calculate
an ensemble
average

Phase space The set of all the possible microstates the system can adopt
is known as phase space. Each of the microstates in phase space will have
associated with it values for all the various extensive variables (volume, energy,
number of atoms, magnetisation and so on). In addition to these properties
each of the microstates will have a probability associated to it. We can thus
determine the ensemble averages of the energy, volume and number of atoms
using:

〈E〉 =
∑
i

Eipi 〈V 〉 =
∑
i

Vipi 〈N〉 =
∑
i

Nipi

where the sums runs over all the microstates in phase space and Vi, Ei, Ni
and pi are the volume, the energy, the number of atoms and the probability
of microstate i.

Summary

Any physical system can adopt multiple microstates. These set of of all these microstates is referred to
as phase space. There will be values of the extensive variables associated with each of these microstates
as well as a probability of being in each of the microstates in the system.
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Explain the con-
straints we have
to incorporate
when we find
the probability
distribution
that maximises
the entropy

Write the ex-
tended function
that needs to
optimised and
the derivative
of this function
with respect to
pi.

How to determine the probability of being in a microstate The
axiom of equal a priori probabilities tells us that we can find the probability of
being in a state by maximising the entropy, S = −kB

∑N
i=1 pi ln pi. However,

when doing this we must recognise that the problem to be solved here is a
constrained optimisation. In particular, normalisation requires that we have:∑

i

pi = 1

Furthermore, if each of the microstates in phase space has some set of prop-
erties {b(j)}i (a volume, energy, number of atoms, etc) we also assert that
the ensemble average for each of these properties 〈B(j)〉 must be finite. In
other words: ∑

i

pib
(j)
i = 〈B(j)〉

The extended function we generate using Lagrange’s method of undetermined
multipliers is thus:

I(p,λ0,{λ(j)})=−kB
∑
i pi ln pi−kBλ0(

∑
i pi−1)−kB

∑
j λj

(∑
i pib

(j)
i −〈B

(j)〉
)

Differentiating this with respect to pi we obtain:(
∂I

∂pi

)
= − ln pi − ψ −

∑
j

λ(j)b
(j)
i → pi = e−ψe−

∑
j λ

(j)b
(j)
i

where we define ψ = λ0 + 1.

Write an ex-
pression for the
generalised par-
tition function

What is the
partial deriva-

tive
(

∂ψ
∂λ(j)

)
equal to

The generalised partition function We can derive a value for the e−ψ

that appeared in our final expression for the probability, pi, of being in mi-
crostate i by remembering that our probability mass vector must be nor-
malised:∑

i

pi = e−ψ
∑
i

e−
∑
j λ

(j)b
(j)
i = 1 → eψ =

∑
i

e−
∑
j λ

(j)b
(j)
i

This quantity, eψ, is called the generalised partition function. It is generally
given the symbol Z and we can use it to rewrite the probability of being in

a microstate as: pi = e−
∑
j λ

(j)b
(j)
i

Z We can also determine 〈B(j)〉 from the
partition function by using:

∂ψ

∂λ(j)
= ∂

∂λ(j)
ln

[∑
i e

−
∑
j λ

(j)b
(j)
i

]
=

−
∑
i b

(j)
i
e
−
∑
j λ

(j)b
(j)
i

Z =−〈B(j)〉

Write an expres-
sion for the en-
tropy in terms
of ψ, {λ(j)} and
{〈B(j)〉}

The entropy We next remember that the entropy can be calculated using
S = −kB

∑
i pi ln pi. Inserting the formula for the probability that we derived

above this is:

S
kB

=
∑
i pi
[
ψ+
∑
j λ

(j)b
(j)
i

]
=ψ

∑
i pi+

∑
j λ

(j)∑
i pib

(j)
i =ψ+λ(j)〈B(j)〉

Summary

We can find the probability of being in any microstate by performing a constrained optimisation using
the method of Lagranges undetermined multipliers. This process leads us to a natural definition for the
generalised partition function.
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Write an ex-
pression for
the differential
dS as a linear
combination of
the differen-
tials {dαk} and
{d〈B(j)〉}

Explain the
meaning of the
term generalised
force

Changes in entropy We now suppose that the values of the set of proper-
ties (the {b(j)}i) for each of the microstates depend on some set of external
parameters {αk}. We then ask if it is possible to write an expression for the
differential, dS, of the entropy change. Using the expression that we arrived
at for the entropy in the previous part we can write:

dS

kB
= dψ +

∑
j

λ(j)d〈B(j)〉+
∑
j

〈B(j)〉dλ(j)

Furthermore, remembering that the value of the properties of each of the
microstates depend on α and recalling our old friend from PDEs, we arrive
at:

dψ=
∑
k

(
∂ψ
∂αk

)
dαk+

∑
j

(
∂ψ

∂λ(j)

)
dλ(j)=

∑
k

(
∂ψ
∂αk

)
dα−

∑
j〈B

(j)〉dλ(j)

Inserting this result into the previous expression and calculating
(
∂ψ
∂αk

)
using

the definition of the generalised partition function we arrive at:

dS

kB
=
∑
k

〈Fk〉dαk +
∑
j

λ(j)d〈B(j)〉 where
Fk
kBT

= −
∑
j

λ(j)
〈
∂b(j)

∂αk

〉
Fk is a quantity known as a generalised force. Each of the terms inside the
summation is an ensemble average of the derivative of the b(j) properties with
respect to αk.

Write an ex-
pression for
the ensemble
average of an
extensive quan-
tity

Write an ex-
pression for
the ensemble
average of an
intensive quan-
tity

Explain the
connection be-
tween Lagrange
multipliers
and intensive
quantities

Extensive and intensive quantities In statistical thermodynamics ther-
modynamic variables are either held fixed or they are calculated by taking
ensemble averages over phase space. It is easiest to understand this process
by thinking about the extensive variables. Each of the microstates has an as-
sociated value for the set of extensive variables - these are the set of {b(j)}i
values that we have discussed in previous sections. If we assert that the vol-
ume must equal V1 then the system obvious cannot be in any microstate with
a volume not equal to V1. In other words the probability of being any state
i with Vi 6= V1 must be equal to zero.
Imagine we do not fix the energy. The consequence of this is that there
is a finite probability of being in microstates of any energy as long as they
have volume V1. Obviously, however, the probabilities of being in high energy
microstates will be considerably lower than those of being in low energy mi-
crostates. Our requirement that the ensemble average of the energy be finite
introduces a Lagrange multiplier and as it turns out the value of this Lagrange
multiplier is related to the value of the conjugate intensive thermodynamic
variable. In our example with the energy it is related to the temperature.
Furthermore, because a Lagrange multiplier is just a fixed number, the value
of the corresponding intensive thermodynamic variable must be fixed.
Ensemble averages for non-constrained thermodynamic variables can be cal-
culated using:

Extensive: 〈B(j)〉 =
∑
i

b
(j)
i pj Intensive:

〈
∂b(j)

∂αk

〉
=
∑
i

(
∂b

(j)
i

∂αk

)
pj

In the above expression αk is an extensive variable that is held fixed.

Summary

We calculate thermodynamic variables for equilibrated macro states by taking ensemble averages over
all the microstates in phase space.
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