
Statistical mechanics handout 4

Explain the dif-
ference between
phase space and
an ensemble.

Ensembles As discussed in handout three the atoms in any physical system
can adopt any one of a large number of micorstates. For a quantum system
these microstates are the various quantum levels the system can be in, while
for a classical system these microstates are the various combinations of posi-
tions and velocities the atoms can have. Regardlessly, we refer to the set of
all these microstates as phase space. As discussed in the previous handout
statistical mechanics is concerned with calculating the probability of being in
any given microstate.
The microstates that any physical system can adopt will depend on the walls
that are placed around it. If the system is surrounded by walls that are im-
permeable to heat, work and matter then the system will be confined to a set
of microstates that all have the same energy, volume and temperature. If the
system has walls that can exchange heat but that are impermeable to work
and matter then the system will be confined to a set of microstates that all
have the same volume and temperature. However, as long as they satisfy the
constraints on the volume and number of atoms microstates with all possible
energies are permissible. We call the set of states that are accessible to a
system surrounded by walls the ensemble. Clearly, the set of microstates in
any given ensemble is a subset of the set of microstates in phase space.

Which extensive
variables are
fixed in the
microcanonical
ensemble.

Give a for-
mula for the
partition func-
tion

What is the
probability
of being in a
particular mi-
crostate

Explain the
connection
between the
microcanon-
cial partition
function and a
thermodynamic
potential

The microcanonical (NV E) ensemble In statistical mechanics when
we develop models for isolated systems we use the microcanonical ensemble.
Neither material, work nor heat can be exchanged with isolated systems so
such systems have constant volume, constant number of atoms and constant
internal energy. As such these system can only be in microstates that have
energy, E, volume, V and number of atoms N . In other words none of
the extensive thermodynamic variables need to be calculated by averaging
and the only constraint when we perform our constrained optimisation is
the requirement of normalisation. Consequently, if there are Ω microstates
that have energy E, volume V and number of atoms N the microcanonical
partition function is given by:

Zmc(N,V,E) = Ω

Furthermore, the probability of being in a particular microstate is simply:

pi =
1

Zmc(N,V,E)

as long as the microstate in question has energy E, volume V and number
of atoms N . The appropriate thermodynamic potential for this ensemble is
the entropy, which can be calculated from the partition function using:

S(N,V,E) = kB lnZmc(N,V,E)

Summary

To make the connection between classical thermodynamics and the statistical behaviour of atoms we
have to incorporate the effect of the walls surrounding the system. Walls fix the values of certain
extensive variables and will thus force the system to be in one of the microstates in a subset of phase
space (the ensemble). The microcanonical ensemble has fixed number of atoms, fixed volume and fixed
internal energy.
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Which extensive
variables are
fixed in the
canonical en-
semble

Give a for-
mula for the
canonical parti-
tion function

Give the proba-
bility for being
in a particular
microstate in
the canonical
ensemble

Which is the
appropriate
thermodynamic
potential to
use when con-
sidering the
behaviour of
the canonical
ensemble

Describe two
ways in which
one can cal-
culate the
ensemble av-
erage of the
energy

Explain how
the heat ca-
pacity can be
calculated

The canonical (NV T ) ensemble In statistical mechanics when we de-
velop models for closed systems that cannot do PV work we use the canonical
ensemble. Neither material nor work can be exchanged with closed systems
that cannot do PV work so such system have constant volume and constant
number atoms. The energy, however, has to be calculated as an ensemble
average. Inserting these requirements into the expression for dS that we
derived on worksheet 3 we arrive at:

dS

kB
= −λ(1)

〈
∂E

∂N

〉
dN − λ(1)

〈
∂E

∂V

〉
dV + λ(1)d〈E〉

Remembering that we can also calculate dS by combining the first and second
laws of thermodynamics (see handout 2) we arrive at:

dS =
P

T
dV − µ

T
dN +

1

T
dE

Equating coefficients of dE gives us:

λ(1) =
1

kBT
= β

This quantity 1
kBT

appears in many places in statistical mechanics so it is
thus given the special symbol β. The canonical partition function is equal to:

Zc(N,V, T ) =
∑
i

e−βEi

where the sum here runs over all microstates that have volume V and number
of atoms N . The probability of being in any microstate with volume V and
number of atoms N is:

pi =
e−βEi

Zc(N,V, T )

By inserting the expression above into
∑
i pi and differentiating it with respect

to β it is possible to show that:

〈E〉 =
∑
i

Eipi = −
(
∂ lnZc(N,V, T )

∂β

)
and that:

〈(E − 〈E〉)2〉 =

(
∂2 lnZc(N,V, T )

∂β2

)
In addition, we can relate the logarithm of the canonical partition function to
the Helmholtz free energy using:

F (N,V, T ) = −kBT lnZc(N,V, T )

Last but not least we can show that the constant volume heat capacity (a
response function) is related to the ensemble average of the fluctuations in
the internal energy via:

Cv =
1

kBT 2
〈(E − 〈E〉)2〉

Summary

Closed systems are examined using the canonical ensemble in which the volume and number of atoms
are assumed fixed. The canonical partition function is connected to the Helmholtz free energy. The
internal energy is calculated as an ensemble average.
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Which extensive
variables are
fixed in the
isothermal-
isobaric ensem-
ble

Give a for-
mula for the
isothermal-
isobaric parti-
tion function

Give the proba-
bility for being
in a particular
microstate in
the isothermal-
isobaric ensem-
ble

Which is the
appropriate
thermodynamic
potential to
use when con-
sidering the
behaviour of
the isothermal-
isobaric ensem-
ble

Describe two
ways in which
one can cal-
culate the
ensemble av-
erage of the
energy/volume

Explain how
the isothermal
compress-
ibility/heat
capacity can be
calculated

The isothermal-isobaric (NPT ) ensemble In statistical mechanics
when we develop models for closed systems that can do PV work we use
the isothermal-isobaric ensemble. Material cannot be exchanged with closed
systems so such systems have constant number atoms. The energy and vol-
ume, however, have to be calculated as ensemble averages. Inserting these
requirements into the expression for dS that we derived on worksheet 3 we
arrive at:

dS

kB
= −

[
λ(1)

〈
∂E

∂N

〉
+ λ(2)

〈
∂V

∂N

〉]
dN + λ(1)d〈E〉+ λ(2)d〈V 〉

Remembering that we can also calculate dS by combining the first and second
laws of thermodynamics (see handout 2) we arrive at:

dS = −µ
T

dN +
1

T
dE +

P

T
dV

Equating coefficients of dE and dV gives us:

λ(1) =
1

kBT
= β λ(2) =

P

kBT
= βP

The isothermal-isobaric partition function is equal to:

Zii(N,P, T ) =
∑
i

e−βEie−βPVi

where the sum here runs over all microstates that have number of atoms N .
The probability of being in any microstate with number of atoms N is:

pi =
e−βEie−βPVi

Zii(N,P, T )

By inserting the expression above into
∑
i pi and differentiating it with respect

to (βP ) it is possible to show that:

〈V 〉 =
∑
i

Vipi = −
(
∂ lnZii(N,P, T )

∂(βV )

)
and that:

〈(V − 〈V 〉)2〉 =

(
∂2 lnZii(N,P, T )

∂(βV )2

)
In addition, we can relate the logarithm of the isothermal-isobaric partition
function to the Gibbs free energy using:

G(N,P, T ) = −kBT lnZii(N,P, T )

Last but not least we can show that the isothermal compressibility (a response
function) is related to the ensemble average of the fluctuations in the volume
via:

κT =
1

kBT

1

〈V 〉
〈(V − 〈V 〉)2〉

Notice also that we can (still) also relate the ensemble average of the energy
to a derivative of the logarithm of the Zii(N,P, T ) with respect to β and
that as such the constant pressure heat capacity is related to the fluctuations
in the total energy for this ensemble.

Summary

Closed systems that can do PV work are examined using the isothermal-isobaric ensemble only the
number of atoms is assumed fixed.
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Which extensive
variables are
fixed in the
grand canonical
ensemble

Give a for-
mula for the
grand canonical
partition func-
tion

Give the proba-
bility for being
in a particu-
lar microstate
in the grand
canonical en-
semble

Which is the
appropriate
thermodynamic
potential to
use when con-
sidering the
behaviour of the
grand canonical
ensemble

Describe two
ways in which
one can cal-
culate the
ensemble av-
erage of the
energy/number
of atoms

The grand canonical (µV T ) ensemble In statistical mechanics when we
develop models for open systems that cannot do PV work we use the grand
canonical ensemble. PV work cannot be exchanged with such systems so
they have constant volume. The number of atoms and the energy, however,
have to be calculated as ensemble averages. Inserting these requirements into
the expression for dS that we derived on worksheet 3 we arrive at:

dS

kB
= −

[
λ(1)

〈
∂E

∂V

〉
+ λ(2)

〈
∂N

∂V

〉]
dV + λ(1)d〈E〉+ λ(2)d〈N〉

Remembering that we can also calculate dS by combining the first and second
laws of thermodynamics (see handout 2) we arrive at:

dS =
P

T
dV +

1

T
dE − µ

T
dN

Equating coefficients of dE and dN gives us:

λ(1) =
1

kBT
= β λ(2) = − µ

kBT
= −βµ

The grand canonical partition function is equal to:

Zgc(µ, V, T ) =
∑
i

e−βEieβµNi

where the sum here runs over all microstates that have volume V . The
probability of being in any microstate with volume V is:

pi =
e−βEieβµNi

Zgc(µ, V, T )

By inserting the expression above into
∑
i pi and differentiating it with respect

to (βµ) it is possible to show that:

〈N〉 =
∑
i

Nipi =

(
∂ lnZgc(µ, V, T )

∂(βµ)

)
and that:

〈(N − 〈N〉)2〉 =

(
∂2 lnZgc(µ, V, T )

∂(βµ)2

)
In addition, we can relate the logarithm of the grand canonical partition
function to the Grand potential using:

Ω = −kBT lnZgc(µ, V, T )

Notice also that we can (still) also relate the ensemble average of the energy
to a derivative of the logarithm of the Zgc(µ, V, T ) with respect to β and that
as such we can calculate an unnamed heat capacity from the fluctuations in
the total energy for this ensemble.

Summary

Open systems can be examined using the grand-canonical ensemble in which only the volume is assumed
fixed. The number of atoms and energy are calculated by ensemble averaging.

4



How is the
canonical par-
tition function
connected to
the microcanon-
ical partition
function

How is the
isothermal-
isobaric parti-
tion function
connected to
the canonical
partition func-
tion

Hos is the
grand canonical
partition func-
tion connected
to the canon-
ical partition
function

Relationships between ensembles We can derive formula that relate the
partition functions in the various ensembles. For example, the microcanonical
and canonical partition functions are related by:

Zc(N,V, T ) =

∫
Zmc(N,V,E)e−βEdE

You can arrive at this formula by remembering that the microcanoncial par-
tition function Zmc(N,V,E) is just equal to the number of microstates with
number of atoms N , volume V and energy E. Each of these microstates
will make a contribution of e−βE to the sum in the canonical partition func-
tion and hence the total contribution of the Zmc(N,V,E) microstates will
be Zmc(N,V,E)e−βE . The integral can be thought of the continuous limit
of a summation and hence the formula above. A similar logic allows one to
relate the canonical and isothermal isobaric partition functions using:

Zii(N,P, T ) =

∫
Zc(N,V, T )e−βPV dV

and the grand canonical and canonical by:

Zgc(µ, V, T ) =

∫
Zc(N,V, T )eβµNdN

What do we
mean when we
talk about the
term thermody-
namic limit

Why is classical
thermodynamic
recovered in this
limit.

The thermodynamic limit We call the limit when the number of atoms
goes to infinity (N →∞) the thermodynamic limit. In this limit fluctuations
around ensemble averages are zero and consequently all the ensembles are
identical. The absence of any fluctuations means that classical thermody-
namics (especially Gibbs phase rule) is recovered in this limit.

Summary

Integrals allow us to connect the various partition functions. The thermodynamic limit is the limit as
N →∞. In this limit all ensembles are identical and classical thermodynamics is recovered.
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