The probability distribution function

- Explain why $\lim _{x \rightarrow-\infty} F_{X}(x)=0 F_{X}(x)$ is the probability distribution function for the random variable X
- Explain why $\lim _{x \rightarrow+\infty} F_{X}(x)=1$. $F_{X}(x)$ is the probability distribution function for the random variable X
- Consider a die and explain what set of outcomes are in each of the following subsets $\{s:(s \in$ $\Omega) \wedge(x(s) \leq 0\},\{s:(s \in \Omega) \wedge(x(s) \leq 1\},\{s:(s \in \Omega) \wedge(x(s) \leq 1.5\},\{s:(s \in \Omega) \wedge(x(s) \leq 4.5\}$ and $\{s:(s \in \Omega) \wedge(x(s) \leq 6.25\}$. In these expressions Ω is used to represent the sample space for the experiment and $x(s)$ tells you the value that comes up when the dice is rolled.
- Sketch the probability distribution function for a random variable X tells you the outcome of a fair dice roll. Indicate all the points on this curve where the function is discontinuous.

The probability distribution function

A joined up approach to teaching and learning mathematics

- Write a mathematical expression using limits which tells us that the function $f(x)$ has a discontinuity at a.

