The free energy landscape for the metal A joined up approach to teaching and learning mathematics

• What is significant a	about the poin	s where the	black curve	intercepts with	the x	axis?
-------------------------	----------------	-------------	-------------	-----------------	-------	-------

• When the applied field H is equal to 0 at how many points does the black line intercept with the x axis? What happens as the the inverse temperature is increased?

• Describe the shape of the green curve when H=0 and when (a) $T<2\frac{k_BT}{J}$ and when (b) $T>2\frac{k_BT}{J}$. How does the shape of this curve differ in these two regimes? What happens to the derivative of the free energy with respect to $\langle M \rangle$ at H=0 when $T=2\frac{k_BT}{J}$?

• What happens to the shape of the green curve when $H \neq 0$. Comment on the behavior of the turning points and the way this number changes with field strength and temperature.

The free energy landscape for the metal A joined up approach to 1D ising model The free energy landscape for the metal A joined up approach to teaching and learning mathematics

• Given what you have discussed explain how the magnetization behaves as you move from the $T>2\frac{k_BT}{J}$ regime to the $T<2\frac{k_BT}{J}$ regime in the absense of an applied field

• How does the magnetisation behave as the temperature is increased in the presence of an applied magentic field?