- Which extensive thermodynamic variables are constrained to have a particular value in the isothermalisobaric ensemble.
- Give an expression for the probability of being in a microstate in the isothermal-isobaric ensemble
- Give an expression for the isothermal-isobaric partition function
- Give an expression for $\frac{\mathrm{d} S}{k_{B}}$ for the isothermal-isobaric ensemble that can be obtained using arguments based on statistical mechanics.
- Give an expression for the Lagrange multiplier λ and explain how this result is derived.
- What thermodynamic potential can be calculated from the isothermal-isobaric partition function? How is this done and how is this result derived?
- Explain why: $1=\sum_{j} e^{-\beta H\left(\mathbf{x}_{j}, \mathbf{p}_{j}\right)-\beta P V\left(\mathbf{x}_{i}, \mathbf{p}_{i}\right)-\Psi}$
- Now calculate the first derivative of $1=\sum_{j} e^{-\beta H\left(\mathbf{x}_{j}, \mathbf{p}_{j}\right)-\beta P V\left(\mathbf{x}_{i}, \mathbf{p}_{i}\right)-\Psi}$ with respect to βP and hence show that $\langle V\rangle=-\frac{\partial \Psi}{\partial(\beta V)}$
- Calculate the second derivative of $1=\sum_{j} e^{-\beta H\left(\mathbf{x}_{j}, \mathbf{p}_{j}\right)-\beta P V\left(\mathbf{x}_{i}, \mathbf{p}_{i}\right)-\Psi}$ with respect to βP and hence show that $\left\langle(V-\langle V\rangle)^{2}\right\rangle=\frac{\partial^{2} \Psi}{\partial(\beta P)^{2}}$
- Explain (in your own words) why $\left\langle(V-\langle V\rangle)^{2}\right\rangle=-\frac{\partial \Psi}{\partial(\beta P)}$.
- Use the chain rule to show that: $\frac{\partial\langle V\rangle}{\partial(\beta P)}=k_{B} T \frac{\partial\langle V\rangle}{\partial P}$ if T is constant.
- Use the result you have just arrived at to write an expression that tells you how the isothermal compressibility, κ_{T}, can be calculated from the fluctuations in the total volume $\left\langle(V-\langle V\rangle)^{2}\right\rangle$

