

• Which extensive thermodynamic variables are constrained to have a particular value in the isothermalisobaric ensemble.

• Give an expression for the probability of being in a microstate in the isothermal-isobaric ensemble

• Give an expression for the isothermal-isobaric partition function

• Give an expression for $\frac{dS}{k_B}$ for the isothermal-isobaric ensemble that can be obtained using arguments based on statistical mechanics.

• Give an expression for the Lagrange multiplier λ and explain how this result is derived.

• What thermodynamic potential can be calculated from the isothermal-isobaric partition function? How is this done and how is this result derived?

• Explain why: $1 = \sum_{j} e^{-\beta H(\mathbf{x}_{j},\mathbf{p}_{j}) - \beta PV(\mathbf{x}_{i},\mathbf{p}_{i}) - \Psi}$

• Now calculate the first derivative of $1 = \sum_{j} e^{-\beta H(\mathbf{x}_{j},\mathbf{p}_{j})-\beta PV(\mathbf{x}_{i},\mathbf{p}_{i})-\Psi}$ with respect to βP and hence show that $\langle V \rangle = -\frac{\partial \Psi}{\partial (\beta V)}$

The isothermal-isobaric ensemble

• Calculate the second derivative of $1 = \sum_{j} e^{-\beta H(\mathbf{x}_{j},\mathbf{p}_{j}) - \beta PV(\mathbf{x}_{i},\mathbf{p}_{i}) - \Psi}$ with respect to βP and hence show that $\langle (V - \langle V \rangle)^{2} \rangle = \frac{\partial^{2} \Psi}{\partial (\beta P)^{2}}$

• Explain (in your own words) why $\langle (V - \langle V \rangle)^2 \rangle = -\frac{\partial \Psi}{\partial (\beta P)}$.

• Use the chain rule to show that: $\frac{\partial \langle V \rangle}{\partial (\beta P)} = k_B T \frac{\partial \langle V \rangle}{\partial P}$ if T is constant.

• Use the result you have just arrived at to write an expression that tells you how the isothermal compressibility, κ_T , can be calculated from the fluctuations in the total volume $\langle (V - \langle V \rangle)^2 \rangle$