Key Ideas : SOR3012

The baloons below contain many of the important ideas and theorems that are covered in this module. If you have
a good understanding of what everything on this sheet means then you have a good understanding of the module
content. I would recommend that you stick these sheets in the first few pages of the hardback book that you keep
your notes inside and that you consult these notes regularly as you work through the module.

How do we use
capital letters in
statistics?

How do we
encode the
information
we have about
what might
happen in those
experiments

in the future
mathemati-
cally?

Give three
properties that
all  cumulative
probability
distribution
functions must
have?

What is the
difference  be-
tween discrete

and continu-
ous random
variables?

What does

the probability
mass function
fx (z) measure?

What does
the probability
density function
fx (z) measure?

In statistics we use capital letters to denote the random outcomes from ex-
periments performed in the future.

We encode our understanding of what might happen in those experiments
in the future in a function known as the cumulative probability distribution
function. The value of this function, F'x (x), at small x tells you the probability
that the random variable will take a value less than or equal to x.

The cumulative probability distribution must have the following three proper-
ties: lim, oo P(X < 2) =0, lim,_, 4o P(X < z) =1andlim._,o P(X <
(x+€) = P(X < 2)

Discrete random variables cannot take any real value on the real axis. They
can only take particular (usually integer) values. Continuous random variables
can take any real value in a particular range.

The probability mass function fx(z) tells one the probability that the dis-
crete random variable (capital) X will take a value of (small) z.

The probability density function fx () is equal to the derivative of the cumu-
lative probability distribution function for the continuous random variable
(capital) X evaluated at the point (small) z.



How do you cal-
culate the ex-
pectation of a
discrete random
variable?

How do you cal-
culate the ex-
pectation of a
continuous ran-
dom variable?

How do you cal-
culate the vari-
ance of a ran-
dom variable?

How is  the
moment gener-
ating function
calculated and
explain how one
can calculate
moments if one
is given this
function

Why is  the
expectation

an  important
quantity?

What does the
central limit
theorem state?

The expectation of a discrete random variable is equal to the sum over all
the possible values that the random variable can take of x; multiplied by the
probabiltiy mass function fx (z;). In other words, E[X] = > z; fx (;)

The expectation of a continuous random variable is equal to the integral over
all possible x values of & multiplied by the probability density function, fx ().
In other words, E[X] = [* xfx(x)dz.

The variance of a random variable, X, can be calculated by taking the ex-
pectation of [X — E(X)]? or by computing the expectation of the square of
the random variable, E(X?), and by subtracting E(X)2.

The moment generating function, Mx (t) for a random variable, X, is
Mx (t) = E(e!X). If one evaluates the nth derivatives of this function at
t = 0 one gets the nth moment of the distribution

The expectation is important because the sum of n independent and identi-
cally distributed random variables divided by n converges towards this partic-
ular value because of a result known as the law of large numbers. The law of
large number states:

i”—IE(X)‘>e> =0

lim P (
n— oo

where n is the number of independent random variables with expectation
E(X) that have been added together to give S,, and where € is a small
number.

The central limit theorem states that the cumulative probability distribution
function for a sum of independent and identically distributed random vari-
ables of most types can be approximated using the cumulative probability
distribution function of a normal distribution. More precisely it states:

lim P (W < z) = &(2)

where n is the number of independent random variables with expectation p
and variance o2 that have been added together to give S,, and where ®(2)
is the cumulative probability distribution function for the standard normal
distribution with expectation 0 and variance 1.



What can we
use to under-
stand if the

result from
one experiment
affects the

outcome of a
second, different
experiment?

What does
Bayes theorem
state?

If X = 2 when-
ever Y = 4
what can we say
about the events
X =2andY =
47

If X is never
equal to 2 when-
ever Y = 4
what can we say
about the events
X =2andY =
47

If the value the
random variable
X takes has no
effect on the
value on the
value the ran-
dom variable Y
takes what can
we say about
the random

variables X and
Y

Can two events

be both in-
dependent
and  mutually
exclusive?

To understand if the result from one experiment, (capital) X, affects the
outcome of a second, different experiment, (capital) Y we use the conditional
probability. The conditional probability that X = 3 given Y = 2 is equal to
the probability that X = 3 AND Y = 2 divided by the probability that Y = 2.
In other words:

P(X=3AY =2)
P(Y =2)

P(X =3y =2) =

Bayes theorem states that P(X = z|Y = y)P(Y = y) = P(Y = y|X =
z)P(X = 1)

If X = 2 whenever Y = 4 then the events X = 2 and Y = 4 are concur-
rent. These two events always happen at the same time and the conditional
probablity P(X = 2|Y =4) is equal to one.

If X is never equal to 2 whenever Y = 4 then the events X =2 and Y =4
are mutually exclusive. Y's equalling 4 somehow prevents X from equalling
two and the conditional probability P(X = 2|Y = 4) is equal to zero.

If the value the random variable X takes has no effect on the value on
the value the random variable Y the two random variables are said to be
indepdent. For all possible values of = and y the conditional probability
P(X = z|Y = y) = P(X = x) and the conditional probability P(Y =
yIX =) = P(Y = y).

Two events X = 3 and Y = 2 cannot be independent and mutually exclusive
as indepdences implies that the conditional probability P(X = 3|Y = 2) =
P(X = 3), while mutual exclusivity implies that the conditional probability
P(X = 3]Y = 2) = 0. We can conclude from these two equations that
P(X = 3) =0 and hence that the event X = 3 is impossible.



What is a
Bernoulli ran-
dom variable?

What is a Bi-
nomial random
variable?

What is a Ge-
ometric random
variable?

What is an
exponential ran-
dom variable?

What is a pois-
son random
variable?

What does the
joint probability

mass func-
tiOD, fXY(xvy)a
measure?

How do we
calculate the
covariance of a
pair of random
variables?

What is a
stochastic pro-
cess?

A bernoulli random variable, X, is a discrete random variable that is used
to model an experiment with two outcomes success and failure. For this
variable failure is given a value of 0 and success a value of 1. The probability
of success (X = 1) is p. The expectation of this random variable is p and
the variance is p times (1 — p)

A Binomial random variable is a discrete random variable that is used to
model the number of successes amongst n independent Bernoulli trials. The
probability mass function for this random variable is equal to (7)p*(1—p)" "
The expectation of this random variable is np, while the variance is np(1 —p)

A geometric random vairable is a discrete random variable that used to model
the number of independent Bernoulli trials that need to be performed before
you get a success. The probability mass function for this random variable is
equal to (1 — p)*~!p The expectation of this random variable is 1/p while
the variance is (1 — p)/p®.

An exponential random variable is a continuous random variable that can be
used to model the process of waiting for something to happen. This random
variable is unique in that it has no memory. The cumulative probability distri-
bution function for this random variable is equal to 1 — e~** The expectation
of this random variable is 1/ and the variance is 1/)\2.

A Poisson random variable is a discirete random variable, which can be
thought of as a large n limit for the binomial random variable. The probabil-
ity mass function for this random variable is equal to ;—Te_k. The mean and
variance of this random variable are both equal to A.

The joint probability mass function fxy (z,y) measures the probability that
the random variable X is equal to  and the random variable Y equals y.

The covariance of a pair of random variables X and Y, is calculated as
E{[X —E(X)][Y —E(Y)]} or as E(XY) — E(Y)E(Y).

A stochastic process is a time series of random variables.



What is the
simplest  kind
of stochastic
process?

What  mathe-
matical object
do we use
to represent
the one step
transition prob-
abilities for a
Markov chain?

How do we
calculate the
probability that
the system will
transition from
state 7 to state j
over the course
of n timesteps?

What is the dif-
ference between
a recurrent and
a transient state
of a Markov
chain?

How do we mea-
sure the period
of a state in a
Markov chain?

When does a
Markov  chain
have a limit-
ing stationary
distribution?

The simplest kind of stochastic process is a Markov chain. A time series of
random variables is said to have to have the Markov property if the values the
random variable take at future times depends only on the current value the
random variable. In other words, the values the random takes in the future
does not depend on the values random variables took during the past. This
is a rather colloquial definition a more formal definition for a Markov chain
is a time series of random variables whose probability distribution functions
have the following property:

P(Xt+1 = (Et+1‘X0 = £C0/\X1 = 1’1/\' . '/\Xt = (Et) = P(Xﬁ,l = .’Et+1|Xt = (Et)

We use a matrix to represent the one-step transition probabilities. Element
(i,7) of this matrix gives the probability that the system will transition from
state 7 to state j in a single timestep.

Element (4, j) of the nth power of the one-step transition probability matrix
is equal to the probability that the system will transition from state 7 to state
j over the course of n timesteps. This result is known as the Chapman-
Kolmogorov relation.

Any recurrent state is guaranteed to have a finite return time. A transient
state is not guaranteed to have a finite return time. More formally if a state
is recurrent >~ (P™);; = 1 while if a state is transient >  (P™);; < 1.

The period of a state is equal to the greatest common divisor of the set of
possible return times to that state.

A Markov chain has a limiting stationary distribution when all the states in
the chain are recurrent. A markov chain with a limiting stationary distribution
is said to be ergodic. This stationary distribution can be found by finding
the top left eigenvector of the transition probability matrix. Furthermore, a
Markov chain which has only recurrent states satisfies the ergodic theorem
which tells us 1 over the expected return time to a state is equal to the
fraction of time the system stays in that state.



What does the
ergodic theorem
state and when
does it hold?

What is the Kol-
mogorov —equa-
tion?

How is the jump
rate matrix of a
continuous time
Markov  chain
defined?

The ergodic theorem states that

lim ———= =
n—oo M ]E(Tk)

where My, (n) is the number of visits the system makes to the kth state in a
n step chain and where E(7},) is the expected return time to state k. This
theorem holds for Markov chains that have a finite number of recurrent states.

The Kolmogorov equation is a differential equation that is at the heart of
the theory of Markov chains in continuous time. The Kolmogorov equation
tells us that derivative of the transition probability matrix with respect to
time is equal to the product of the jump rate matrix, Q, with the transition

- : d
probability matrix, P(¢). In other words, I;(kt) = QP(¢t).

The jump rate matrix, Q, of a continuous time Markov chain is equal to

P(t) minus the identity over ¢ in the limit as ¢ tends to zero. In other words,

Q = limy o P(tt)_l-




